Skip to main content
Log in

Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Temperature is one of the most important factors controlling growth, development, and reproduction in plants. The rate of photosynthesis declines at moderately high temperatures in plants and particularly in temperate species like Arabidopsis thaliana. This can be attributed to a reduced ability of Rubisco activase to achieve optimum activation of Rubisco, leading to reduced Rubisco activity. In order to overcome this problem, we transformed the Arabidopsis rca mutant with a more thermostable, chimeric activase where a Rubisco recognition domain in the more thermostable tobacco activase was replaced with that from Arabidopsis. Transgenic lines expressing this activase showed higher rates of photosynthesis than the wild type after a short exposure to higher temperatures and they also recovered better, when they were returned to the normal temperature. Moreover, under extended exposure to moderately elevated temperature, the transgenic lines had higher biomass and seed yield when compared with the wild type plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ATP:

Adenosine 5′-triphosphate

ATPase:

ATP hydrolysis

ECM:

Activated Rubisco, carbamylated with magnesium bound

ER:

Inactive Rubisco bound with inhibitor RuBP

rca :

Regulation carboxylation activity or the Rubisco activase gene

Rubisco:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

RuBP:

Ribulose 1,5-bisphosphate

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with image. J Biophoto Int 11:36–42

    Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543. doi:10.1146/annurev.pp.31.060180.002423

    Article  Google Scholar 

  • Cen Y-P, Sage RF (2005) The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol 139:979–990

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435. doi:10.1073/pnas.230451497

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, van de Loo FJ, Salvucci ME (1997) The two forms of ribulose-1,5-bisphosphate carboxylase-oxygenase activase differ in sensitivity to elevated temperature. Plant Physiol 114:439–444

    PubMed  CAS  Google Scholar 

  • Eckardt NA, Portis AR Jr (1997) Heat denaturation profiles of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase and the inability of Rubisco activase to restore activity of heat-denatured Rubisco. Plant Physiol 113:243–248. doi:10.1104/pp.113.2.575

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DL, Badger MR, Andrews TJ (1990) Slow inactivation of Ribulosebisphosphate carboxylase during catalysis is caused by accumulation of a slow, tight-binding inhibitor at the catalytic site. Plant Physiol 93:1390–1397. doi:10.1104/pp.93.4.1390

    Article  PubMed  CAS  Google Scholar 

  • Esau BD, Snyder GW, Portis AR Jr (1996) Differential effects of N- and C-terminal deletions on the two activities of rubisco activase. Arch Biochem Biophys 326:100–105. doi:10.1006/abbi.1996.0052

    Article  PubMed  CAS  Google Scholar 

  • Evans LT (1998) Feeding the ten billion: plants and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Feng L, Wang K, Li Y, Tan Y, Kong J, Li H, Li Y, Zhu Y (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep 26:1635–1646. doi:10.1007/s00299-006-0299-y

    Article  PubMed  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2007) FAO, Rome

  • Intergovernmental Panel on Climate Change (2007) IPCC Report 2007. IPCC, WMO, Geneva

    Google Scholar 

  • Kim K, Portis AR Jr (2005) Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol 46:522–530. doi:10.1093/pcp/pci052

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Portis AR Jr (2006) Kinetic analysis of the slow inactivation of Rubisco during catalysis: effects of temperature, O2 and Mg++. Photosynth Res 87:195–204. doi:10.1007/s11120-005-8386-4

    Article  PubMed  CAS  Google Scholar 

  • Kubien DS, Sage RF (2008) The temperature response of photosynthesis in tobacco with reduced amounts of Rubisco. Plant Cell Environ 31:407–418. doi:10.1111/j.1365-3040.2008.01778.x

    Article  PubMed  CAS  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241. doi:10.1105/tpc.107.054171

    Article  PubMed  CAS  Google Scholar 

  • Li C, Salvucci ME, Portis AR Jr (2005) Two residues of Rubisco activase involved in recognition of the Rubisco substrate. J Biol Chem 280:24864–24869. doi:10.1074/jbc.M503547200

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287:476–479. doi:10.1126/science.287.5452.476

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    PubMed  CAS  Google Scholar 

  • Portis AR Jr (2001) The Rubisco activase–Rubisco system: an ATPase dependent association that regulates photosynthesis. In: McManus MT, Laing WA, Allan AC (eds) Protein–Protein interactions in Plant Biology. CRC Press, Boca Raton

    Google Scholar 

  • Portis AR Jr (2003) Rubisco activase—Rubisco’s catalytic chaperone. Photosynth Res 75:11–27. doi:10.1023/A:1022458108678

    Article  PubMed  CAS  Google Scholar 

  • Quinn PJ, Williams WP (1985) Environmentally induced changes in chloroplast membranes and their effects on photosynthetic function. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Robinson SP, Portis AR Jr (1988) Release of the nocturnal inhibitor, carboxyarabinitol-1-phosphate, from ribulose bisphosphate carboxylase/oxygenase by rubisco activase. Fed Eur Biochem Soc LetT 233:413–416

    Article  CAS  Google Scholar 

  • Robinson SP, Portis AR Jr (1989) Adenosine triphosphate hydrolysis by purified Rubisco activase. Arch Biochem Biophys 268:93–99. doi:10.1016/0003-9861(89)90568-7

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004a) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186. doi:10.1111/j.0031-9317.2004.0173.x

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004b) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470. doi:10.1104/pp.103.038323

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064. doi:10.1104/pp.010357

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, van de Loo FJ, Stecher D (2003) Two isoforms of Rubisco activase in cotton, the products of separate genes not alternative splicing. Planta 216:736–744

    PubMed  CAS  Google Scholar 

  • Salvucci ME, DeRidder BP, Portis AR Jr (2006) Effect of activase level and isoform on the thermotolerance of photosynthesis in Arabidopsis. J Exp Bot 57:3793–3799. doi:10.1093/jxb/erl140

    Article  PubMed  CAS  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735. doi:10.1111/j.1365-3040.2004.01172.x

    Article  CAS  Google Scholar 

  • Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782. doi:10.1038/nature03145

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD (2000) Some like it hot. Science 287:435–436. doi:10.1126/science.287.5452.435

    Article  PubMed  CAS  Google Scholar 

  • United Nations (2007) Population report 2007. UN, New York

  • Wang ZY, Portis AR Jr (1992) Dissociation of ribulose-1,5-bisphosphate bound to ribulose-1, 5-bisphosphate carboxylase oxygenase and its enhancement by ribulose-1,5-bisphosphate carboxylase oxygenase activase-mediated hydrolysis of ATP. Plant Physiol 99:1348–1353. doi:10.1104/pp.99.4.1348

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Snyder GW, Esau BD, Portis AR Jr, Ogren WL (1992) Species-dependent variation in the interaction of substrate-bound ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase. Plant Physiol 100:1858–1862. doi:10.1104/pp.100.4.1858

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhanced photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309. doi:10.1104/pp.105.063164

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Portis AR Jr (1999) Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc Natl Acad Sci USA 96:9438–9443. doi:10.1073/pnas.96.16.9438

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Kallis RP, Ewy RG, Portis AR Jr (2002) Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Natl Acad Sci USA 99:3330–3334. doi:10.1073/pnas.042529999

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dan Stessman for providing the binary vector PDS9 and Dr. Hans Bohnert for providing A. tumefaciens GV1101 competent cells. This work was supported in part by a grant (97ER20268) from the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshuman Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Li, C. & Portis, A.R. Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. Photosynth Res 100, 143–153 (2009). https://doi.org/10.1007/s11120-009-9438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9438-y

Keywords

Navigation