Skip to main content

Utilizing Host-Plant Resistance to Circumvent Blast Disease in Rice

  • Chapter
  • First Online:
Blast Disease of Cereal Crops

Part of the book series: Fungal Biology ((FUNGBIO))

  • 300 Accesses

Abstract

Blast is one of the devastating diseases of rice which cause significant yield losses. Blast is mainly managed by the use of fungicides. However, this approach is not eco-friendly and causes health hazards. Basmati is the specialty rice of India with great export potential. However, the importing nations have increased the stringency in maximum permissible limits of pesticide residues in the grain, which has led to rejection of several Basmati rice consignments. Therefore, developing genetic resistance is one of the most pragmatic approaches to address this issue. More than 100 blast resistance genes have been identified which can be effectively deployed into the high-yielding rice varieties through marker-assisted backcross breeding. In India the major blast resistance genes, namely Pi9, Pi2, Pi54, Pita, and Pi1, are widely used to develop blast resistance in popular rice varieties. Until recently, blast-resistant varieties developed in India are Pusa Basmati 1637, Pusa Basmati 1609, Pusa 1612, and Pusa Samba 1850. Effective adoption of these varieties would significantly reduce the use of chemical pesticides, thereby producing consumer-safe rice with eco-friendly approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics. 2008;180:2267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashkani S, Yusop MR, Shabanimofrad M, Azadi A, Ghasemzadeh A, Azizi P, Latif MA. Allele mining strategies: principles and utilisation for blast resistance genes in rice (Oryza sativa L.). Curr Issues Mol Biol. 2015;17:57–74.

    PubMed  Google Scholar 

  • Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell. 2004;16:2499–513.

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun EJ, Howard RJ. Adhesion of fungal spores and germlings to host plant surfaces. Protoplasma. 1994;181(1–4):202–12.

    Article  Google Scholar 

  • Bryan GT, Wu KS, Farrall L, Jia Y, Hershey HP, McAdams SA, Faulk KN, Donaldson GK, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell. 2000;12:2033–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Fournier EJ, Tharreau D, Terauchi R, Kroja T. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell. 2013;25:1463–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J. 2006;46:794–804.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Shi YF, Liu W, Chai R, Fu Y, Zhuang J, Wu J. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics. 2011;38:209–16.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Peng P, Tian J, He Y, Zhang L, Liu Z, Yin D, Zhang Z. Pike, a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at the Pik locus. Mol Breed. 2015;35:117.

    Article  CAS  Google Scholar 

  • Collard BCY, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the 21st century. Philos Trans R Soc B Rev. 2008;363:557–72.

    Article  CAS  Google Scholar 

  • Couch BC, Kohn LM. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia. 2002;94:683–93.

    Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ. Pivoting the plant immune system from dissection to deployment. Science. 2013;341:746–51.

    Article  CAS  PubMed  Google Scholar 

  • Das A, Soubam D, Singh PK, Thakur S, Singh NK, Sharma TR. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Funct Integr Genomics. 2012;12:215–28.

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science. 2017;355:962–5.

    Article  CAS  PubMed  Google Scholar 

  • Devanna NB, Vijayan J, Sharma TR. The blast resistance gene Pi54of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PLoS One. 2014;9:e104840.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholera. Proc Natl Acad Sci U S A. 2013;110(7):2623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellur RK, Khanna A, Yadav A, Pathania S, Rajashekara H, Singh VK, Krishnan SG, Bhowmick PK, Nagarajan M, Vinod KK, Prakash G. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci. 2016;242:330–41.

    Article  CAS  PubMed  Google Scholar 

  • Feng S, Wang L, Ma J, Lin F, Pan Q. Genetic and physical mapping of AvrPi7, a novel avirulence gene of Magnaporthe oryzae using physical position-ready markers. Chin Sci Bull. 2007;52:903–11.

    Article  CAS  Google Scholar 

  • Fitzgerald MA, Sackville Hamilton NR, Calingacion MN, Verhoeven HA, Butardo VM. Is there a second fragrance gene in rice? Plant Biotechnol J. 2008;6:416–23.

    Article  CAS  PubMed  Google Scholar 

  • Flor HH. The complementary genetic systems in flax rust. Adv Genet. 1956;8(29):54.

    Google Scholar 

  • Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science. 2009;325:998–1001.

    Article  CAS  PubMed  Google Scholar 

  • Fukuoka S, Yamamoto SI, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TT, Koizumi S, Sugimoto K, Matsumoto T, Yano M. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast. Sci Rep. 2014;4:1–7.

    Article  Google Scholar 

  • Fukuta Y, Araki E, Telebanco-Yanoria MJ, Ebron L, Mercado-Escueta D, Takai T, Khush GS. Identification of blast resistance gene, Pish in rice (Oryza sativa L.). In: Proc. Plant and Animal Genome XII Conference, San Diego, CA, 10–14 January. 2004. p. 401.

    Google Scholar 

  • Ghatak A, Willocquet L, Savary S, Kumar J. Variability in aggressiveness of rice blast (Magnaporthe oryzae) isolates originating from rice leaves and necks: a case of pathogen specialization. PLoS One. 2013;8(6):e66180.

    Google Scholar 

  • Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J. 2009;57:413–25.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J. 2010;64:498–510.

    Google Scholar 

  • Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet. 2000;100(7):1121–8.

    Article  CAS  Google Scholar 

  • Hospital F, Charcosset A. Marker assisted introgression of quantitative trait loci. Genetics. 1997;147:1469–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard RJ, Bourett TM, Ferrari MA. In: Mendgen K, Lesemann DE, editors. Infection by Magnaporthe grisea: an in vitro analysis. Berlin: Springer; 1991a. p. 251–64.

    Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci. 1991b;88:11281–4.

    Article  CAS  PubMed  Google Scholar 

  • Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet. 2012;125:1047–55.

    Article  CAS  PubMed  Google Scholar 

  • Jain P, Singh PK, Kapoor R, Khanna A, Solanke AU, Krishnan SG, Singh AK, Sharma V, Sharma TR. Understanding host-pathogen interactions with expression profiling of NILs carrying rice-blast resistance Pi9 gene. Front Plant Sci. 2017;8:9.

    Article  Google Scholar 

  • Khan GH, Shikari AB, Vaishnavi R, Najeeb S, Padder BA, Bhat ZA, Parray GA, Bhat MA, Kumar R, Singh NK. Marker-assisted introgression of three dominant blast resistance genes into an aromatic rice cultivar Mushk Budji. Sci Rep. 2018;8(1):1–3.

    Google Scholar 

  • Khanna A, Sharma V, Ellur RK, Shikari AB, Gopala Krishnan S, Singh UD, Prakash G, Sharma TR, Rathour R, Variar M, Prashanthi SK, Nagarajan M, Vinod KK, Bhowmick PK, Singh NK, Prabhu KV, Singh BD, Singh AK. Development and evaluation of near-isogenic lines for major blast resistance gene(s) in Basmati rice. Theor Appl Genet. 2015a;128(7):1243–59.

    Article  CAS  PubMed  Google Scholar 

  • Khanna A, Sharma V, Ellur RK, Shikari AB, Krishnan SG, Singh UD, Prakash G, Sharma TR, Rathour R, Variar M, Prashanthi SK. Marker assisted pyramiding of major blast resistance genes Pi9 and Pita in the genetic background of an elite Basmati rice variety, Pusa Basmati 1. Indian J Genet. 2015b;75(4):417–25.

    Article  CAS  Google Scholar 

  • Kumar MKP, Gowda DKS, Moudgal R, Kumar NK, Gowda KTP, Vishwanath K. Impact on fungicides on rice production in India. In: Nita M, editor. Fungicides-showcases of integrated plant disease management from around the world. InTech; 2013. ISBN: 978-953-51-1130-6. https://doi.org/10.5772/51009. http://www.intechopen.com/books/fungicides-showcases-of-integrated-plant-disease-managementfrom-around-the-world/impact-of-fungicides-on-rice-production-in-india. Accessed 18 Aug 2014.

  • Lee S, Song M, Seo Y, Kim S, Ko S, Cao P, Suh J, Yi G, Roh J, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon JS. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics. 2009;181:1627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact. 2009;22:411–20.

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics. 2007;177:1871–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Lin F, Wang L, Pan Q. The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics. 2007;176:2541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu B, Zhu X, Yang J, Bordeos A, Wang G, Leach JE, Leung H. Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor Appl Genet. 2013;126:985–98.

    Article  CAS  PubMed  Google Scholar 

  • Lü Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L. Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology. 2013;103:594–9.

    Article  Google Scholar 

  • Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhou K, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant-Microbe Interact. 2015;28:558–68.

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Xiao G, Telebanco-Yanoria MJ, Siazon PM, Padilla J, Opulencia R, Bigirimana J, Habarugira G, Wu J, Li M, Wang B. The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita. Rice. 2020;13(1):1–5.

    Article  Google Scholar 

  • Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam DC, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J. 2011;66:467–79.

    Article  CAS  PubMed  Google Scholar 

  • Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell. 2000;12:2019–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JY, Jin J, Lee YW, Kang S, Lee YH. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Plant Physiol. 2009;149:474–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics. 2006;172:1901–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Singh PK, Gupta DK, Mahato AK, Sarkar C, Rathour R, Singh NK, Sharma TR. Analysis of Magnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Front Plant Sci. 2016;7:1140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulze-Lefert P, Panstruga R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 2011;16:117–25.

    Article  CAS  PubMed  Google Scholar 

  • Seck PA, Diagne A, Mohanty S, Wopereis MCS. Crops that feed the world. Food Sec. 2012;4:7–24.

    Article  Google Scholar 

  • Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L. Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics. 2009;182:1303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma TR, Madhav MS, Singh BK, Shanker P, Jana TK, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti HC, Singh NK. High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Mol Gen Genomics. 2005;274:569–78.

    Article  CAS  Google Scholar 

  • Sharma TR, Rai AK, Gupta SK, Singh NK. Broad-spectrum blast resistance gene Pi-kh cloned from rice line Tetep designated as Pi54. J Plant Biochem Biotechnol. 2010;19:87–9.

    Article  CAS  Google Scholar 

  • Silue D, Notteghem JL, Tharreau D. Evidence of a gene-for-gene relationship in the Oryza sativa-Magnaporthe oryzae pathosystem. Phytopathology. 1992;82:577–80.

    Article  Google Scholar 

  • Singh VP. In: Singh RK, Singh US, Khush GS, editors. Aromatic rices. New Delhi: Oxford and India Book House; 2000. p. 135–53.

    Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Choudhary V, Sarkel S, Singh D, Gopala SK, Nagarajan M, Vinod KK, Singh UD, Rathore R, Prashanthi SK, Agrawal PK, Bhatt JC, Mohapatra T, Prabhu KV, Singh AK. Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line through marker assisted backcross breeding. Field Crop Res. 2012a;128:8–16.

    Article  Google Scholar 

  • Singh A, Singh VK, Singh SP, Pandian RT, Ellur RK, Singh D, Bhowmick PK, Gopala Krishnan S, Nagarajan M, Vinod KK, Singh UD. Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB Plants. 2012b;1:2012.

    Google Scholar 

  • Singh VK, Singh A, Singh SP, Ellur RK, Singh D, Gopala Krishnan S, Bhowmick PK, Nagarajan M, Vinod KK, Singh UD, Mohapatra T, Prabhu KV, Singh AK. Marker-assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes Pi2 and Pi54 into an elite Basmati rice restorer line PRR78. Plant Breed. 2013;132(5):486–95.

    CAS  Google Scholar 

  • Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet. 2015;128:2213–25.

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano LM, Kamoun S, Terauchi R. MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol. 2013;200:276–83.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol. 2010;10:175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Talbot NJ. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol. 2003;57:177–202.

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD. Molecular markers in plant breeding. Plant Mol Biol Rep. 1983;1:1–3.

    Article  Google Scholar 

  • Tanweer F, Rafii M, Sijam K, Rahim H, Ahmed F, Latif M. Current advance methods for the identification of blast resistance genes in rice. C R Biol. 2015;338:321–34.

    Article  PubMed  Google Scholar 

  • Telebanco-Yanoria MJ, Koide Y, Fukuta Y, Imbe T, Tsunematsu H, Kato H, Ebron LA, Nguyet TMN, Kobayashi N. A set of near-isogenic lines of Indica-type rice variety CO39 as differential varieties for blast resistance. Mol Breed. 2011;27:357–73.

    Article  Google Scholar 

  • Tsunematsu H, Yanoria MJT, Ebron LA, Hayashi N, Ando I, Kato H, Imbe T, Khush GS. Development of monogenic lines of rice for blast resistance. Breed Sci. 2000;50:229–34.

    Article  Google Scholar 

  • Wang Z, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 1999;19:55–64.

    Article  PubMed  Google Scholar 

  • Wang B, Ebbole DJ, Wang Z. The arms race between Magnaporthe oryzae and rice: diversity and interaction of Avr and R genes. J Integr Agric. 2017;16(12):2746–60.

    Article  Google Scholar 

  • Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol. 2009;7(3):185–95.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li J, Li C, Song MY, Cumagun CJR, Deng Q, Lu G, Jeon JS, Naqvi NI, Zhou B. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol. 2015;206:1463–75.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Hayashi N, Wang C, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C. Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed. 2014;34:691–700.

    Article  CAS  Google Scholar 

  • Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell. 2009;21:1573–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan B, Zhai C, Wang WJ, Zeng XS, Xu XK, Hu HQ, Lin F, Wang L, Pan QH. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet. 2011;122:1017–28.

    Article  PubMed  Google Scholar 

  • Zhai C, Lin F, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol. 2011;189:321–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhai C, Zhang Y, Yao N, Lin F, Liu Z, Dong Z, Wang L, Pan Q. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS One. 2014;9:e98067.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wang L, Wu W, He L, Yang X, Pan Q. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Sci Rep. 2015;5:11642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Zheng W, Lin F, Zhang Y, Yi Y, Wang B, Lu G, Wang Z, Wu W. AVR1-CO39 is a predominant locus governing the broad avirulence of Magnaporthe oryzae 2539 on cultivated rice (Oryza sativa L.). Mol Plant-Microbe Interact. 2011;24:13–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Qu SH, Liu GF, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang GL. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact. 2006;19:1216–28.

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Chen S, Yang J, Zhou S, Zeng L, Han J, Su J, Wang L, Pan Q. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family. Theor Appl Genet. 2012;124:1295–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanna, A. et al. (2021). Utilizing Host-Plant Resistance to Circumvent Blast Disease in Rice. In: Nayaka, S.C., Hosahatti, R., Prakash, G., Satyavathi, C.T., Sharma, R. (eds) Blast Disease of Cereal Crops. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-60585-8_2

Download citation

Publish with us

Policies and ethics