Skip to main content

Nutrition in Critical Illness During Pregnancy

  • Chapter
  • First Online:
Principles and Practice of Maternal Critical Care
  • 831 Accesses

Abstract

Both pregnancy and critical illness lead to adaptive processes which may be in fact maladaptive. There is much controversy concerning prescription of nutrition during either state, and even less is known as to direct nutritional therapy during critical illness in the pregnant or postpartum patient. While pregnancy is an anabolic process, critical illness is essentially a catabolic one, and care must be taken to provide adequate nutritional support to answer the needs of both the mother and fetus. This chapter centers on what is known and what recommendations can be made in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lain KY, Catalano PM. Metabolic changes in pregnancy. Clin Obstet Gynecol. 2007;50(4):938–348.

    Article  PubMed  Google Scholar 

  2. Stosur S, Liu N, Rodrigues S, et al. Serum water analysis in normal pregnancy and preeclampsia. Clin Lab Sci. 2011;24(2):99–104.

    Article  PubMed  Google Scholar 

  3. Dechend R, Lamarca B, Taylor RN. Chapter 15: the renin-angiotensin system, its autoantibodies, and body fluid volume in preeclampsia. In: Taylor RN, editor. Chelsley’s hypertensive disorders in pregnancy. 4th ed. Amsterdam: Elsevier; 2015. p. 315–34.

    Chapter  Google Scholar 

  4. Gueri M, Jutsum P, Sorhaindo B. Anthropometric assessment of nutritional status in pregnant women: a reference table of weight-for-height by week of pregnancy. Am J Clin Nutr. 1982;35(3):609–16.

    Article  CAS  PubMed  Google Scholar 

  5. Hronek M, Doubkova P, Tosner J, et al. Prediction of nutritive intake energy and substrates of Czech pregnant women. Nutrition. 2011;27(11–12):1118–24.

    Article  PubMed  Google Scholar 

  6. Hillesund ER, Bere E, Sagedal LR, et al. Pre-pregnancy and early pregnancy dietary behavior in relation to maternal and newborn health in the Norwegian Fit for Delivery study—a post hoc observational analysis. Food Nutr Res. 2018;62. https://doi.org/10.29219/fnr.v62.1273. eCollection 2018.

  7. Goldstein RF, Abell SK, Ranasinha S, et al. Gestational weight gain across continents and ethnicity: systematic review and meta-analysis of maternal and infant outcomes in more than one million women. BMC Med. 2018;16(1):153.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goldstein RF, Abell SK, Ranasinha S, et al. Association of gestational weight gain with maternal and infant outcomes: a systematic review and meta-analysis. JAMA. 2017;317(21):2207–25.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nair M, Choudhury MK, Choudhury SS, et al. Association between maternal anaemia and pregnancy outcomes: a cohort study in Assam, India. BMJ Glob Health. 2016;1(1):e000026.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Einav S, Weiniger CF. Maternal anaemia—the story behind the number. Eur J Anaesthesiol. 2018;35(4):315–6.

    Article  PubMed  Google Scholar 

  11. National collaborating centre for women’s and children’s health (UK). Antenatal care: routine care for the healthy pregnant woman. NICE clinical guidelines, No. 62. London: RCOG Press; 2008.

    Google Scholar 

  12. Açkurt F, Wetherilt H, Löker M, et al. Biochemical assessment of nutritional status in pre- and post-natal Turkish women and outcome of pregnancy. Eur J Clin. 1995;49(8):613–22.

    Google Scholar 

  13. Butte NF, Calloway DH, Van Duzen JL. Nutritional assessment of pregnant and lactating Navajo women. Am J Clin Nutr. 1981;34(10):2216–28.

    Article  CAS  PubMed  Google Scholar 

  14. Hiesmayr M. Nutrition risk assessment in the ICU. Curr Opin Clin Nutr Metab Care. 2012;15:174–80.

    Article  CAS  PubMed  Google Scholar 

  15. Fontes D, Generoso Sde V, Toulson Davisson Correia MI. Subjective global assessment: a reliable nutritional assessment tool to predict outcomes in critically ill patients. Clin Nutr. 2014;33(2):291–5.

    Article  PubMed  Google Scholar 

  16. Ali NA, O’Brien JMJR, Hoffman SP, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med. 2008;178:261–8.

    Article  PubMed  Google Scholar 

  17. Biolo G, Agostini F, Simunic B, et al. Positive energy balance is associated with accelerated muscle atrophy and increased erythrocyte glutathione turnover during 5wk of bed rest. Am J Clin Nutr. 2008;88:950–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rahman A, Hasan MH, Agarwala R, et al. Identifying critically-ill patients who will benefit most from nutritional therapy: further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin Nutr. 2017;35(1):158–62.

    Article  Google Scholar 

  19. Heyland DK, Dhaliwal R, Jiang X, et al. Identifying critically ill patients who benefit most from nutrition therapy: the development and initial validation of a novel risk assessment tool. Crit Care. 2011;15:R268.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Danziger J, Chen K, Cavender S, et al. Admission peripheral edema, central venous pressure and survival in critically ill patients. Ann Am Thorac Soc. 2016;13(5):705–11.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ravasco P, Camilo ME, Gouveia-Oliviera A, et al. A critical approach to nutritional assessment in critically ill patients. Clin Nutr. 2002;28(3):267–70.

    Google Scholar 

  22. McClave SA, Snider HL. Use of indirect calorimetry in clinical nutrition. Nutr Clin Pract. 1992;7(5):207–21.

    Article  CAS  PubMed  Google Scholar 

  23. Malone AM. Methods of assessing energy expenditure in the intensive care unit. Nutr Clin Pract. 2002;17(1):21–8.

    Article  PubMed  Google Scholar 

  24. Heyland D, Muscedere J, Wischmeyer PE, Canadian Critical Care Trials Group, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368(16):1489–97.

    Article  CAS  PubMed  Google Scholar 

  25. Lev S, Cohen J, Singer P. Indirect calorimetry measurements in the ventilated critically ill patient: facts and controversies--the heat is on. Crit Care Clin. 2010;26(4):e1–9.

    Article  PubMed  Google Scholar 

  26. Amato P, Keating KP, Quercia RA, et al. Formulaic methods of estimating calorie requirements in mechanically ventilated obese patients: a reappraisal. Nutr Clin Pract. 1995;10(6):229–32.

    Article  CAS  PubMed  Google Scholar 

  27. Butte NF, Wong WW, Treuth MS, et al. Energy requirements during pregnancy based on total energy expenditure and energy deposition. Am J Clin Nutr. 2004;79:1078–87.

    Article  CAS  PubMed  Google Scholar 

  28. Frankenfield DC, Wiles CE 3rd, Bagley S, et al. Relationships between resting and total energy expenditure in injured and septic patients. Crit Care Med. 1994;22(11):1796–804.

    Article  CAS  PubMed  Google Scholar 

  29. Gariballa S, Forster S. Energy expenditure of acutely ill hospitalised patients. Nutr J. 2006;5:9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bruder N, Raynal M, Pellisier D, et al. Influence of body temperature, with or without sedation, on energy expenditure in severe head-injured patients. Crit Care Med. 1998;26(33):568–72.

    Article  CAS  PubMed  Google Scholar 

  31. Yüksel E, Çankayalı İ, Demirağ K, et al. The effect of neuromuscular blockade on oxygen consumption and energy expenditure in mechanically ventilated acute respiratory insufficiency patients. J Turkish Soc Intensive Care. 2012;10:8–12.

    Google Scholar 

  32. Vernon DD, Witte MK. Effect of neuromuscular blockade on oxygen consumption and energy expenditure in sedated, mechanically ventilated children. Crit Care Med. 2000;28(5):1569–71.

    Article  CAS  PubMed  Google Scholar 

  33. Yu CKH, Teoh TG, Robinson S. Obesity in pregnancy. BJOG. 2006;113:1117–25.

    Article  CAS  PubMed  Google Scholar 

  34. Pickkers P, De Keizer N, Dusseljee J, et al. Body mass index is associated with hospital mortality in critically ill patients: an observational cohort study. Crit Care Med. 2013;41(8):1878–83.

    Article  PubMed  Google Scholar 

  35. Hutagalung R, Marques J, Kobylka K. The obesity paradox in surgical intensive care unit patients. Intensive Care Med. 2011;37(11):1793–9.

    Article  PubMed  Google Scholar 

  36. Baracos V, Rodemann HP, Dinarello CA, et al. Stimulation of muscle protein degradation and prostaglandin E2 release by leukocytic pyrogen (interleukin-I). N Engl J Med. 1983;308:553–8.

    Article  CAS  PubMed  Google Scholar 

  37. Mitch WE, Goldberg AL. Mechanisms of muscle wasting- the role of the ubiquitin-proteasome pathway. N Engl J Med. 1996;335:1897–905.

    Article  CAS  PubMed  Google Scholar 

  38. Villet S, Chilero RL, Bollmann MD, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24(4):502–9.

    Article  PubMed  Google Scholar 

  39. Faisy C, Lerolle N, Dachraoui F, et al. Impact of energy deficit calculated by a predictive method on outcome in medical patients requiring prolonged acute mechanical ventilation. Br J Nutr. 2009;101(7):1079–87.

    Article  CAS  PubMed  Google Scholar 

  40. Dvir D, Cohen J, Singer P. Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr. 2006;25(1):37–44.

    Article  PubMed  Google Scholar 

  41. Wei X, Day AG, Oullette-Kuntz H, et al. The association between nutritional adeqacuy and long-term outcomes in critically ill patients requiring prolonged mechanical ventilation: a multicenter cohort study. Crit Care Med. 2015;43(8):1569–79.

    Article  PubMed  Google Scholar 

  42. Reid CL, Campbell IT, Little RA. Muscle wasting and energy balance in critical illness. Clin Nutr. 2004;23(2):273–80.

    Article  PubMed  Google Scholar 

  43. Looijaard WG, Dekker IM, Stapel SN, et al. Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients. Crit Care. 2016;20(1):386.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reid C. Frequency of under- and overfeeding in mechanically ventilated ICU patients: causes and possible consequences. J Hum Nutr Diet. 2006;19:13–22.

    Article  CAS  PubMed  Google Scholar 

  45. Ribeiro LM, Oliviera Filho RS, Caruso L, et al. Adequacy of energy and protein balance of enteral nutrition in intensive care: what are the limiting factors? Rev Bras Ter Intensiva. 2014;26(2):155–62.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kühl C. Glucose metabolism during and after pregnancy in normal and gestational diabetic women. Acta Endocrinol. 1975;79(4):709–19.

    Article  Google Scholar 

  47. Simmons MA, Battaglia FC, Meschia G. Placental transfer of glucose. J Dev Physiol. 1979;118:23–8.

    Google Scholar 

  48. Bell AW, Bauman DE. Adaptations of glucose metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia. 1997;2(3):265–78.

    Article  CAS  PubMed  Google Scholar 

  49. Catalano PM, Hustob L, Amini SB, et al. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus. Am J Obstet Gynecol. 1999;180(4):903–16.

    Article  CAS  PubMed  Google Scholar 

  50. Bellamy L, Casas JP, Hingorani AD, et al. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373(9677):1773–9.

    Article  CAS  PubMed  Google Scholar 

  51. Preiser JC, Ichai C, Orban JC, et al. Metabolic response to critical illness. Br J Anaesth. 2014;113(6):945–54.

    Article  CAS  PubMed  Google Scholar 

  52. Falciglia M, Freyberg RW, Almenoff PL, et al. Hyperglycemia-related mortality in critically ill patients varies with admission diagnosis. Crit Care Med. 2009;37(12):3001–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vriesendorp TM, DeVries JH, Van Santen S, et al. Evaluation of short-term consequences of hypoglycemia in an intensive care unit. Crit Care Med. 2006;34(11):2714–8.

    Article  CAS  PubMed  Google Scholar 

  54. NICE-SUGER Investigators. Hypoglycemia and the risk of death in critically ill patients. N Engl J Med. 2012;367(12):1108–18.

    Article  CAS  Google Scholar 

  55. Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36(11):3008–13.

    Article  CAS  PubMed  Google Scholar 

  56. Krinsley JS, Egi M, Kiss A, et al. Diabetic status and the relation of the three domains of glycemic control to mortality in critically ill patients: an international multicenter cohort study. Crit Care. 2013;17(2):R37.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rosenn BM, Miodovnik M, Holcverg G, et al. Hypoglycemia: the price of intensive insulin therapy for pregnant women with insulin-dependent diabetes mellitus. Obstet Gynecol. 1995;85(3):417–22.

    Article  CAS  PubMed  Google Scholar 

  58. Ter Braak EW, Evers IM, Willem Erkelens D, et al. Maternal hypoglycemia during pregnancy in type 1 diabetes: maternal and fetal consequences. Diabetes Metab Res Rev. 2002;18(2):96–105.

    Article  PubMed  Google Scholar 

  59. Gleeson S, Mulroy E, Clarke DE. Lactation ketoacidosis: an unusual entity and a review of the literature. Perm J. 2016;20(2):71–3.

    PubMed  PubMed Central  Google Scholar 

  60. Lederman SA, Paxton A, Heymsfield SB, et al. Body fat and water changes during pregnancy in women with different body weight and weight gain. Obstet Gynecol. 1997;90(4 pt 1):483–8.

    Article  CAS  PubMed  Google Scholar 

  61. Sidebottom AC, Brown JE, Jacobs DR Jr. Pregnancy-related changes in body fat. Eur J Obstet Gynecol Reprod Biol. 2001;94(2):216–23.

    Article  CAS  PubMed  Google Scholar 

  62. Kinoshita T, Itoh M. Longitudinal variance of fat mass deposition during pregnancy evaluated by ultrasonography: the ration of visceral fat to subcutaneous fat in the abdomen. Gynecol Obstet Investig. 2006;61:115–8.

    Article  Google Scholar 

  63. Godfrey KM, Barker DJP. Fetal nutrition and adult disease. Am J Clin Nutr. 2000;71(5 suppl):1344S–52S.

    Article  CAS  PubMed  Google Scholar 

  64. Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015–35.

    CAS  PubMed  Google Scholar 

  65. Hubel CA, Roberts JM, Taylor RN, et al. Lipid peroxidation in pregnancy: new perspectives on preeclampsia. Am J Obstet Gynecol. 1989;161(4):1025–34.

    Article  CAS  PubMed  Google Scholar 

  66. Walsh SW. Lipid peroxidation in pregnancy. Hypertens Pregnancy. 1994;13(1):1–32.

    Article  CAS  Google Scholar 

  67. Holman RT, Johnson SB, Ogburn PL. Deficiency of essential fatty acids and membrane fluidity during pregnancy and lactation. Proc Natl Acad Sci U S A. 1991;88:4835–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Larqué E, Gil-Sánchez A, Prieto-Sánchez MT, et al. Omega 3 fatty acids, gestation and pregnancy outcomes. Br J Nutr. 2012;107(Suppl 2):S77–84.

    Article  PubMed  CAS  Google Scholar 

  69. Scientific Advisory Committee on Nutrition & Committee on Toxicity. Advice on fish comsumption: benefits and risks. London: United Kingdom: The Stationary Office; 2004.

    Google Scholar 

  70. Miles EA, Noakes PS, Kremmyda LS, et al. The salmon in pregnancy study: study design, subject characteristics, maternal fish and marine n-3 fatty acid intake, and marine n-3 fatty acids status in maternal and umbilical cord blood. Am J Clin Nutr. 2011;94(Suppl 6):1986S–92S.

    Article  CAS  PubMed  Google Scholar 

  71. Onwude JL, Lilford RJ, Hjartardottir H, et al. A randomized double blind placebo controlled trial of fish oil in high risk pregnancy. Br J Obstet Gynaecol. 1995;102(2):95–100.

    Article  CAS  PubMed  Google Scholar 

  72. Pinsky MR. Dysregulation of the immune response in severe sepsis. Am J Med Sci. 2004;328(4):220–9.

    Article  PubMed  Google Scholar 

  73. Bulger EM, Maier RV. Lipid mediators in the pathophysiology of critical illness. Crit Care Med. 2000;28(4):N27–36.

    Article  CAS  PubMed  Google Scholar 

  74. Mayer K, Seeger W. Fish oil in critical illness. Curr Opin Clin Nutr Metab Care. 2008;11(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  75. Manzanares W, Langlois PL, Dhaliwal R, et al. Intravenous fish oil lipid emulsions in critically ill patients: an updated systematic review and meta-analysis. Crit Care. 2015;19:167.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Heyland DK, Novak F, Drover JW, et al. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA. 2001;286(8):944–53.

    Article  CAS  PubMed  Google Scholar 

  77. Heys SD, Walker LG, Smith I, et al. Enteral nutritional supplementation with key nutrients in patients with critical illness and cancer: a meta-analysis of randomized controlled clinical trials. Ann Surg. 1999;229(4):467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kieft H, Roos AN, Van Drunen JD, et al. Clinical outcome of immunonutrition in a heterogenous intensive care population. Intensive Care Med. 2005;31(4):524–32.

    Article  PubMed  Google Scholar 

  79. Chen W, Jiang H, Zhou ZY, et al. Is omega-3 fatty acids enriched nutrition support safe for critical ill patients? A systematic review and meta-analysis. Nutrients. 2014;6(6):2148–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kagan I, Cohen J, Stein M, et al. Preemptive enteral nutrition enriched with eicosapentaenoic acid, gamma-linoleic acid and anti-oxidants in severe multiple trauma: a prospective, randomized double-blind study. Intensive Care Med. 2015;41(3):460–9.

    Article  CAS  PubMed  Google Scholar 

  81. Rice TW, Wheeler AP, Thompson BT, et al. Enteral omega-3 fatty acid, gamma-linoleic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(1):1574–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. King JC. Physiology of pregnancy and nutrient metabolism. Am J Clin Nutr. 2000;71(5 Suppl):1218S–25S.

    Article  CAS  PubMed  Google Scholar 

  83. Calloway DH. Nitrogen balance during pregnancy. Curr Concepts Nutr. 1974;2:79–94.

    CAS  PubMed  Google Scholar 

  84. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes: energy, carbohydrates, fiber, fatty acids, cholesterol, protein and amino acids. Washington DC: The National Academy; 2005.

    Google Scholar 

  85. Stephens TV, Payne M, Ball RO, et al. Protein requirements of healthy pregnant women during early and late gestation are higher than current recommendations. J Nutr. 2015;145(1):73–8.

    Article  CAS  PubMed  Google Scholar 

  86. Imdad A, Bhutta ZA. Maternal nutrition and birth outcomes: the effect of balanced protein-energy supplementation. Paediatr Perinat Epidemiol. 2012;26(Suppl 1):178–90.

    Article  PubMed  Google Scholar 

  87. Maslova E, Rytter D, Bech BH, et al. Maternal protein intake during pregnancy and offspring overweight 20 years later. Am J Clin Nutr. 2014;100(4):1139–48.

    Article  CAS  PubMed  Google Scholar 

  88. Plank M, Fischer R, Geoghegan V, et al. Protein for the critically ill patients- what and when. Eur J Clin Nutr. 2013;67(5):565–8.

    Article  CAS  PubMed  Google Scholar 

  89. Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.

    Article  CAS  PubMed  Google Scholar 

  90. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: society of critical medicine (SCCM) and American society for parenteral and enteral nutrition (A.S.P.E.N.). J Parenter Enter Nutr. 2016;40(2):159–211.

    Article  CAS  Google Scholar 

  91. Taylor S, Dumont N, Clemente R, et al. Critical care: meeting energy requirements without overfeeding energy. Clin Nutr. 2016;11:e1–8.

    Google Scholar 

  92. Ginguay A, De Bandt JP, Cynober L, et al. Indications and contraindications for infusing specific amino acids (leucine, glutamine, arginine, citrulline and taurine) in critical illness. Curr Opin Clin Nutr Metab Care. 2016;19(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  93. Black RE. Micronutrients in pregnancy. Br J Nutr. 2001;85(Suppl 2):S193–7.

    Article  CAS  PubMed  Google Scholar 

  94. Bothwell TH. Iron requirements during pregnancy and strategies to meet them. Am J Clin Nutr. 2000;72(Suppl 1):257S–64S.

    Article  CAS  PubMed  Google Scholar 

  95. Geneva: World Health Organization (2012). Guideline: intermittent iron and folic acid supplementation in non-anaemic pregnant women. WHO guidelines approved by the guidelines review committee.

    Google Scholar 

  96. Berti C, Biealski HK, Gärtner R, et al. Micronutrients in pregnancy: current knowledge and unresolved questions. Clin Nutr. 2011;30(6):689–701.

    Article  CAS  PubMed  Google Scholar 

  97. Poston L, Brilet AL, Seed PT, et al. Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): a randomised placebo-controlled trial. Lancet. 2006;367(9517):1145–54.

    Article  CAS  PubMed  Google Scholar 

  98. Fall CHD, Fisher DJ, Osmond C, et al. Multiple micronutrient supplementation during pregnancy in low-income countries: a meta-analysis of effects on birth size and length of gestation. Food Nutr Bull. 2009;30(Suppl 4):533S–46S.

    Article  Google Scholar 

  99. Casaer MP, Van Den Berghe G. Nutrition in the acute phase of critical illness. N Engl J Med. 2014;370(13):1227–36.

    Article  CAS  PubMed  Google Scholar 

  100. Manzanares W, Dhaliwal R, Jiang X, et al. Antioxidant micronutrients in the critically ill: a systematic review and meta-analysis. Crit Care. 2012;16(2):R66.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Singer P, Berger MM, Van Den Berghe G, et al. ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr. 2009;28(4):387–400.

    Article  PubMed  Google Scholar 

  102. Hernandez G, Velasco N, Wainstein C, et al. Gut mucosal atrophy after a short enteral fasting period in critically ill patients. J Crit Care. 1999;14(2):73–7.

    Article  CAS  PubMed  Google Scholar 

  103. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut. 1994;35(1 Suppl):S35–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jabbar A, Chang WK, Dryden GW, et al. Gut immunology and the differential response to feeding and starvation. Nutr Clin Pract. 2003;18(6):461–82.

    Article  PubMed  Google Scholar 

  105. Gustafsson UO, Scott MJ, Schwenk W, et al. Guidelines for perioperative care in elective colonic surgery: enhanced recovery after surgery (ERAS(®)) society recommendations. World J Surg. 2013;37(2):259–84.

    Article  CAS  PubMed  Google Scholar 

  106. Bendavid I, Singer P, Theilla M, et al. NutritionDay ICU: a 7 year worldwide prevalence of nutrition practice in intensive care. Clin Nutr; 2016. pii: S0261-5614(16)30178–9.

    Google Scholar 

  107. Alkhawaja S, Martin C, Butler RJ, et al. Post-pyloric versus gastric tube feeding for preventing pneumonia and improving nutritional outcomes in critically ill adults. Cochrane Database Syst Rev. 2015;(8):CD008875.

    Google Scholar 

  108. Nally DM, Kelly EG, Clarke M, et al. Nasogastric feeding is efficacious in severe acute pancreatitis: a systematic review and meta-analysis. Br J Nutr. 2014;112(11):1769–78.

    Article  CAS  PubMed  Google Scholar 

  109. Kuslapuu M, Jõgela K, Starkopf J, et al. The reasons for insufficient enteral feeding in an intensive care unit: a prospective observational study. Intensive Crit Care Nurs. 2015;31(5):309–14.

    Article  PubMed  Google Scholar 

  110. Casaer MP, Mesotten D, Hermans G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–17.

    Article  CAS  PubMed  Google Scholar 

  111. Theilla M, Ławiński M, Cohen J, et al. Safety of home parenteral nutrition during pregnancy. Clin Nutr. 2017;36(1):288–92.

    Article  PubMed  Google Scholar 

  112. Yatabe T, Inoue S, Sakaguchi M, et al. The optimal target for acute glycemic control in critically ill patients: a network meta-analysis. Intensive Care Med. 2017;43(1):16–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Singer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bendavid, I., Singer, P. (2020). Nutrition in Critical Illness During Pregnancy. In: Einav, S., Weiniger, C.F., Landau, R. (eds) Principles and Practice of Maternal Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-030-43477-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43477-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43476-2

  • Online ISBN: 978-3-030-43477-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics