Skip to main content
Log in

The optimal target for acute glycemic control in critically ill patients: a network meta-analysis

  • Systematic Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

The optimal target blood glucose concentration for acute glycemic control remains unclear because few studies have directly compared 144–180 with 110–144 or >180 mg/dL. Accordingly, we performed a network meta-analysis to compare four different target blood glucose levels (<110, 110–144, 144–180, and >180 mg/dL) in terms of the benefit and risk of insulin therapy.

Methods

We included all of the studies from three systematic reviews and searched the PubMed and Cochrane databases for other studies investigating glucose targets among critically ill patients. The primary outcome was hospital mortality, and the secondary outcomes were sepsis or bloodstream infection and the risk of hypoglycemia. Network meta-analysis to identify an optimal target glucose concentration.

Results

The network meta-analysis included 18,098 patients from 35 studies. There were no significant differences in the risk of mortality and infection among the four blood glucose ranges overall or in subgroup analysis. Conversely, target concentrations of <110 and 110–144 mg/dL were associated with a four to ninefold increase in the risk of hypoglycemia compared with 144–180 and >180 mg/dL. However, there were no significant differences between the target concentrations of 144–180 and >180 mg/dL.

Conclusions

This network meta-analysis found no significant difference in the risk of mortality and infection among four target blood glucose ranges in critically ill patients, but indicated that target blood glucose levels of <110 and 110–144 mg/dL were associated with a higher risk of hypoglycemia than target levels of 144–180 and >180 mg/dL. Further studies are required to refute or confirm our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Egi M, Finfer S, Bellomo R (2011) Glycemic control in the ICU. Chest 140:212–220. doi:10.1378/chest.10-1478

    Article  PubMed  Google Scholar 

  2. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367

    Article  PubMed  Google Scholar 

  3. Krinsley JS (2004) Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc 79:992–1000

    Article  PubMed  Google Scholar 

  4. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354:449–461

    Article  PubMed  Google Scholar 

  5. Wiener RS, Wiener DC, Larson RJ (2008) Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA 300:933–944. doi:10.1001/jama.300.8.933

    Article  CAS  PubMed  Google Scholar 

  6. Friedrich JO, Chant C, Adhikari NK (2010) Does intensive insulin therapy really reduce mortality in critically ill surgical patients? A reanalysis of meta-analytic data. Crit Care 14:324. doi:10.1186/cc9240

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hermans G, Van den Berghe G (2015) Clinical review: intensive care unit acquired weakness. Crit Care 19:274. doi:10.1186/s13054-015-0993-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. NICE-SUGAR Study Investigators, Finfer S, Liu B, Chittock DR et al (2012) Hypoglycemia and risk of death in critically ill patients. N Engl J Med 367:1108–1118

    Article  Google Scholar 

  9. NICE-SUGAR Study Investigators, Finfer S, Chittock DR, Su SY et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297. doi:10.1056/NEJMoa0810625

    Article  Google Scholar 

  10. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637. doi:10.1097/CCM.0b013e31827e83af

    Article  PubMed  Google Scholar 

  11. Jacobi J, Bircher N, Krinsley J et al (2012) Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit Care Med 40:3251–3276. doi:10.1097/CCM.0b013e3182653269

    Article  PubMed  Google Scholar 

  12. Song F, Zhong LJ, Han L, Xie GH, Xiao C, Zhao B, Hu YQ, Wang SY, Qin CJ, Zhang Y, Lai DM, Cui P, Fang XM (2014) Intensive insulin therapy for septic patients: a meta-analysis of randomized controlled trials. Biomed Res Int 2014:698265. doi:10.1155/2014/698265

    PubMed  PubMed Central  Google Scholar 

  13. Skapinakis P, Caldwell DM, Hollingworth W, Bryden P, Fineberg NA, Salkovskis P, Welton NJ, Baxter H, Kessler D, Churchill R, Lewis G (2016) Pharmacological and psychotherapeutic interventions for management of obsessive–compulsive disorder in adults: a systematic review and network meta-analysis. Lancet Psychiatry. doi:10.1016/S2215-0366(16)30069-4

  14. Singh JA, Hossain A, Tanjong Ghogomu E, Kotb A, Christensen R, Mudano AS, Maxwell LJ, Shah NP, Tugwell P, Wells G (2016) Biologics or tofacitinib for rheumatoid arthritis in incomplete responders to methotrexate or other traditional disease-modifying anti-rheumatic drugs: a systematic review and network meta-analysis. Cochrane Database Syst Rev 13:CD012183. doi:10.1002/14651858.CD012183

  15. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G (2013) Graphical tools for network meta-analysis in STATA. PLoS One 8:e76654. doi:10.1371/journal.pone.0076654.eCollection

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Higgins JPT, Green S (eds) (2011) Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration, 2011. http://www.cochrane-handbook.org. Accessed March 2011

  17. Plummer M (2016) rjags: Bayesian graphical models using MCMC. R package version 4–6. http://CRAN.R-project.org/package=rjags

  18. van Valkenhoef G, Kuiper J (2016) gemtc: network meta-analysis using Bayesian methods. R package version 0.8. http://CRAN.R-project.org/package=gemtc

  19. Shyangdan DS, Uthman OA, Waugh N (2016) SGLT-2 receptor inhibitors for treating patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. BMJ Open 6:e009417. doi:10.1136/bmjopen-2015-009417

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li T, Puhan MA, Vedula SS, Singh S, Dickersin K, Ad Hoc Network Meta-analysis Methods Meeting Working Group (2011) Network meta-analysis-highly attractive but more methodological research is needed. BMC Med 9:79. doi:10.1186/1741-7015-9-79

    Article  PubMed  PubMed Central  Google Scholar 

  21. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    Article  PubMed  Google Scholar 

  22. Yin S, Zhang D, Du H, Du H, Yin Z, Qiu Y (2015) Is there any difference in survivorship of total hip arthroplasty with different bearing surfaces? A systematic review and network meta-analysis. Int J Clin Exp Med 8:21871–21885

    PubMed  PubMed Central  Google Scholar 

  23. Grey NJ, Perdrizet GA (2004) Reduction of nosocomial infections in the surgical intensive-care unit by strict glycemic control. Endocr Pract 10(Suppl 2):46–52

    Article  PubMed  Google Scholar 

  24. Bilotta F, Spinelli A, Giovannini F, Doronzio A, Delfini R, Rosa G (2007) The effect of intensive insulin therapy on infection rate, vasospasm, neurologic outcome, and mortality in neurointensive care unit after intracranial aneurysm clipping in patients with acute subarachnoid hemorrhage: a randomized prospective pilot trial. J Neurosurg Anesthesiol 19:156–160

    Article  PubMed  Google Scholar 

  25. Bilotta F, Caramia R, Cernak I, Paoloni FP, Doronzio A, Cuzzone V, Santoro A, Rosa G (2008) Intensive insulin therapy after severe traumatic brain injury: a randomized clinical trial. Neurocrit Care 9:159–166. doi:10.1007/s12028-008-9084-9

    Article  CAS  PubMed  Google Scholar 

  26. Bland DK, Fankhanel Y, Langford E, Lee M, Lee SW, Maloney C, Rogers M, Zimmerman G (2005) Intensive versus modified conventional control of blood glucose level in medical intensive care patients: a pilot study. Am J Crit Care 14:370–376

    PubMed  Google Scholar 

  27. Walters MR, Weir CJ, Lees KR (2006) A randomised, controlled pilot study to investigate the potential benefit of intervention with insulin in hyperglycaemic acute ischaemic stroke patients. Cerebrovasc Dis 22:116–122

    Article  CAS  PubMed  Google Scholar 

  28. Bruno A, Kent TA, Coull BM, Shankar RR, Saha C, Becker KJ, Kissela BM, Williams LS (2008) Treatment of hyperglycemia in ischemic stroke (THIS): a randomized pilot trial. Stroke 39:384–389

    Article  CAS  PubMed  Google Scholar 

  29. Mitchell I, Knight E, Gissane J, Tamhane R, Kolli R, Leditschke IA, Bellomo R, Finfer S (2006) Australian and New Zealand Intensive Care Society Clinical Trials Group. A phase II randomised controlled trial of intensive insulin therapy in general intensive care patients. Crit Care Resusc 8:289–293

    PubMed  Google Scholar 

  30. Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139. doi:10.1056/NEJMoa070716

    Article  CAS  PubMed  Google Scholar 

  31. Iapichino G, Albicini M, Umbrello M, Sacconi F, Fermo I, Pavlovich R, Paroni R, Bellani G, Mistraletti G, Cugno M, Pesenti A, Gattinoni L (2008) Tight glycemic control does not affect asymmetric-dimethylarginine in septic patients. Intensive Care Med 34:1843–1850. doi:10.1007/s00134-008-1158-9

    Article  PubMed  Google Scholar 

  32. De La Rosa Gdel C, Donado JH, Restrepo AH et al (2008) Strict glycaemic control in patients hospitalised in a mixed medical and surgical intensive care unit: a randomised clinical trial. Crit Care 12:R120. doi:10.1186/cc7017

    Article  Google Scholar 

  33. Arabi YM, Dabbagh OC, Tamim HM, Al-Shimemeri AA, Memish ZA, Haddad SH, Syed SJ, Giridhar HR, Rishu AH, Al-Daker MO, Kahoul SH, Britts RJ, Sakkijha MH (2008) Intensive versus conventional insulin therapy: a randomized controlled trial in medical and surgical critically ill patients. Crit Care Med 36:3190–3197. doi:10.1097/CCM.0b013e31818f21aa

    Article  CAS  PubMed  Google Scholar 

  34. Chan RP, Galas FR, Hajjar LA, Bello CN, Piccioni MA, Auler JO Jr (2009) Intensive perioperative glucose control does not improve outcomes of patients submitted to open-heart surgery: a randomized controlled trial. Clinics (Sao Paulo) 64:51–60

    Article  Google Scholar 

  35. Farah R, Samokhvalov A, Zviebel F, Makhoul N (2007) Insulin therapy of hyperglycemia in intensive care. Isr Med Assoc J 9:140–142

    CAS  PubMed  Google Scholar 

  36. Henderson WR, Dhingra V, Chittock D, Foster D, Hebert P, Cook D, Heyland D, Dodek P, Griesdale D, Schulzer M, Ronco JJ, Canadian Critical Trials Group (2009) The efficacy and safety of glucose control algorithms in intensive care: a pilot study of the Survival Using Glucose Algorithm Regulation (SUGAR) trial. Pol Arch Med Wewn 119:439–446

    PubMed  Google Scholar 

  37. COIITSS Study Investigators, Annane D, Cariou A, Maxime V et al (2010) Corticosteroid treatment and intensive insulin therapy for septic shock in adults: a randomized controlled trial. JAMA 303:341–348. doi:10.1001/jama.2010.2

    Article  Google Scholar 

  38. Savioli M, Cugno M, Polli F, Taccone P, Bellani G, Spanu P, Pesenti A, Iapichino G, Gattinoni L (2009) Tight glycemic control may favor fibrinolysis in patients with sepsis. Crit Care Med 37:424–431. doi:10.1097/CCM.0b013e31819542da

    Article  CAS  PubMed  Google Scholar 

  39. Cappi SB, Noritomi DT, Velasco IT, Curi R, Loureiro TC, Soriano FG (2012) Dyslipidemia: a prospective controlled randomized trial of intensive glycemic control in sepsis. Intensive Care Med 38:634–641. doi:10.1007/s00134-011-2458-z

    Article  CAS  PubMed  Google Scholar 

  40. Preiser JC, Devos P, Ruiz-Santana S, Mélot C, Annane D, Groeneveld J, Iapichino G, Leverve X, Nitenberg G, Singer P, Wernerman J, Joannidis M, Stecher A, Chioléro R (2009) A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med 35:1738–1748. doi:10.1007/s00134-009-1585-2

    Article  CAS  PubMed  Google Scholar 

  41. McMullin J, Brozek J, McDonald E, Clarke F, Jaeschke R, Heels-Ansdell D, Leppert R, Foss A, Cook D (2007) Lowering of glucose in critical care: a randomized pilot trial. J Crit Care 22:112–118 (discussion 118–119)

  42. Oksanen T, Skrifvars MB, Varpula T, Kuitunen A, Pettilä V, Nurmi J, Castrén M (2007) Strict versus moderate glucose control after resuscitation from ventricular fibrillation. Intensive Care Med 33:2093–2100

    Article  CAS  PubMed  Google Scholar 

  43. de Azevedo JR, de Araujo LO, da Silva WS, de Azevedo RP (2010) A carbohydrate-restrictive strategy is safer and as efficient as intensive insulin therapy in critically ill patients. J Crit Care 25:84–89. doi:10.1016/j.jcrc.2008.10.011

    Article  PubMed  Google Scholar 

  44. Mackenzie IM, Ercole A, Ingle S, Palmer CR (2008) Glycaemic control and outcome in general intensive care: the East Anglian GLYCOGENIC study. Br J Intensive Care 18:121–126

    Google Scholar 

  45. Davies RR, Newton RW, McNeill GP, Fisher BM, Kesson CM, Pearson D (1991) Metabolic control in diabetic subjects following myocardial infarction: difficulties in improving blood glucose levels by intravenous insulin infusion. Scott Med J 36:74–76

    CAS  PubMed  Google Scholar 

  46. Arabi YM, Tamim HM, Dhar GS, Al-Dawood A, Al-Sultan M, Sakkijha MH, Kahoul SH, Brits R (2011) Permissive underfeeding and intensive insulin therapy in critically ill patients: a randomized controlled trial. Am J Clin Nutr 93:569–577. doi:10.3945/ajcn.110.005074

    Article  CAS  PubMed  Google Scholar 

  47. Bilotta F, Caramia R, Paoloni FP, Delfini R, Rosa G (2009) Safety and efficacy of intensive insulin therapy in critical neurosurgical patients. Anesthesiology 110:611–619. doi:10.1097/ALN.0b013e318198004b

    Article  CAS  PubMed  Google Scholar 

  48. Kalfon P, Giraudeau B, Ichai C, Guerrini A, Brechot N, Cinotti R, Dequin PF, Riu-Poulenc B, Montravers P, Annane D, Dupont H, Sorine M, Riou B, CGAO-REA Study Group (2014) Tight computerized versus conventional glucose control in the ICU: a randomized controlled trial. Intensive Care Med 40:171–181. doi:10.1007/s00134-013-3189-0

    Article  CAS  PubMed  Google Scholar 

  49. Hsu CW, Sun SF, Lin SL, Huang HH, Wong KF (2012) Moderate glucose control results in less negative nitrogen balances in medical intensive care unit patients: a randomized, controlled study. Crit Care 16:R56. doi:10.1186/cc11299

    Article  PubMed  PubMed Central  Google Scholar 

  50. Coester A, Neumann CR, Schmidt MI (2010) Intensive insulin therapy in severe traumatic brain injury: a randomized trial. J Trauma 68:904–911. doi:10.1097/TA.0b013e3181c9afc2

    CAS  PubMed  Google Scholar 

  51. Mahmoodpoor A, Ali-Asgharzadeh A, Parish M, Amir-Aslanzadeh Z, Abedini A (2011) A comparative study of efficacy of intensive insulin therapy versus conventional method on mortality and morbidity of critically ill patients. Pak J Med Sci 27:496–499

    Google Scholar 

  52. Green DM, O’Phelan KH, Bassin SL, Chang CW, Stern TS, Asai SM (2010) Intensive versus conventional insulin therapy in critically ill neurologic patients. Neurocrit Care 13:299–306. doi:10.1007/s12028-010-9417-3

    Article  CAS  PubMed  Google Scholar 

  53. Giakoumidakis K, Eltheni R, Patelarou E, Theologou S, Patris V, Michopanou N, Mikropoulos T, Brokalaki H (2013) Effects of intensive glycemic control on outcomes of cardiac surgery. Heart Lung 42:146–151. doi:10.1016/j.hrtlng.2012.12.007

    Article  PubMed  Google Scholar 

  54. Okabayashi T, Shima Y, Sumiyoshi T, Kozuki A, Tokumaru T, Iiyama T, Sugimoto T, Kobayashi M, Yokoyama M, Hanazaki K (2014) Intensive versus intermediate glucose control in surgical intensive care unit patients. Diabetes Care 37:1516–1524. doi:10.2337/dc13-1771

    Article  CAS  PubMed  Google Scholar 

  55. American Diabetes Association (2012) Standards of medical care in diabetes–2012. Diabetes Care 35(Suppl 1):S11–S63. doi:10.2337/dc12-s011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritoki Egi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Take-home message: This network meta-analysis suggested (a) that there was no significant difference in the risk of mortality and infection among the four blood glucose ranges evaluated and (b) that targets of <110 and 110–144 mg/dL were associated with a four to ninefold increase in the risk of hypoglycemia compared with 144–180 and >180 mg/dL. There were no significant differences in the risk of hypoglycemia between the 144–180 and >180 mg/dL target blood glucose levels.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 Flow diagram of study selection. CPB cardiopulmonary bypass (TIFF 51 kb)

Supplementary material 2 (DOCX 17 kb)

134_2016_4558_MOESM3_ESM.tiff

Supplementary material 3 Risk of bias in the included randomized controlled trials. The Cochrane Collaboration tool was used to assess the risk of bias. The authors’ judgments were used to assign the risk of bias for each included study. +, low risk of bias; −, high risk of bias; empty space, unclear risk of bias. Eight studies with a high risk of “other bias” did not provide financial support and/or conflict of interest statements (TIFF 2456 kb)

134_2016_4558_MOESM4_ESM.tiff

Supplementary material 4 The network of all eligible comparisons for the meta-analysis. a In-hospital mortality, b incidences of sepsis or bloodstream infection and c incidences of hypoglycemia. Each node (circle) corresponds to a target blood glucose range. Each line represents a direct comparison between the target ranges, and the width of the line is proportional to the number of studies that compared each target pair. N number of studies (TIFF 3199 kb)

Supplementary material 5 (DOCX 15 kb)

134_2016_4558_MOESM6_ESM.tif

Supplementary material 6 Forest plot for network meta-analysis based on the actual achieved mean glycemic levels. The upper row indicates the pairwise meta-analysis result (blue) and the lower row indicates the network meta-analysis result (black) (TIFF 1541 kb)

134_2016_4558_MOESM7_ESM.tiff

Supplementary material 7 Results of the network analysis comparing the 110–144 and 144–180 mg/dL target blood glucose levels. The circles correspond to the odds ratio and the black horizontal lines correspond to the 95 % credible intervals (TIFF 984 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatabe, T., Inoue, S., Sakaguchi, M. et al. The optimal target for acute glycemic control in critically ill patients: a network meta-analysis. Intensive Care Med 43, 16–28 (2017). https://doi.org/10.1007/s00134-016-4558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-016-4558-2

Keywords

Navigation