Skip to main content

Halophilic Microbes from Plant Growing Under the Hypersaline Habitats and Their Application for Plant Growth and Mitigation of Salt Stress

  • Chapter
  • First Online:
Plant Microbiomes for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 25))

Abstract

Salinity of the agriculture soil is the serious issue all over the world, and it is also an important environmental factor for reduction of growth and yield of agricultural crops. The density of more salt available in soil may alter the physiological and metabolic activities in the agricultural crops and reduce the growth and production of crops both qualitative and quantitative ways. For combating against soil salinity, many transgenic salt-tolerant crops have been developed but far too little is success. For solution, in the soils the use of plant growth-promoting rhizobacteria (PGPR) can reduce soil salinity, load of chemical fertilizers, and pesticide in the agricultural field, and improve soil health, seed germination, crop growth, and productivity under saline condition PGPR accepted as potential microbes that can tolerate various atmospheric circumstances like more temperature, pH, and saline soils. In the saline environment, many halophilic/halotolerant bacteria and plants/halophytes are observed/adapted and perform a significant role in saline soil ecosystem. Innumerable microfloral communities and halophytes contain salt-tolerant gene, and they perform as an essential protagonist in subsistence for extreme environmental condition especially salt. It can be concluded that PGPR can be used as a supportable, manageable, sustainable, and economical tool for salinity tolerance and productivity of crops/plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd_Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail AA, Al-Otibi FO, Malik JA, Alharbi RI, Egamberdieva D (2018) Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J Plant Inter 13(1):37–44

    CAS  Google Scholar 

  • Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Chaudhary HJ (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Uni Sci 26(1):1–20

    Article  Google Scholar 

  • Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb. Biotech 7(3):196–208

    Article  CAS  Google Scholar 

  • Akhtar SS, Andersen MN, Naveed M, Zahir ZA, Liu F (2015) Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Funct Plant Biol 42(8):770–781

    Article  CAS  PubMed  Google Scholar 

  • Akhter MS, Hossain SJ, Amir-Hossain SK, Datta RK (2012) Isolation and characterization of salinity tolerant Azotobacter sp. Greener J Biol Sci 2(3):43–51

    Article  Google Scholar 

  • Alamri SA, Mostafa YS (2009) Effect of nitrogen supply and Azospirillum brasilense sp-248 on the response of wheat to seawater irrigation. Saudi J Bio Sci 16(2):101–107

    Article  Google Scholar 

  • Albaggar A (2014) Investigation of bacterial community composition and abundance in a lowland arable catchment (Doctoral dissertation, University of East Anglia)

    Google Scholar 

  • Amirbakhtiar N, Ismaili A, Ghaffari MR, Firouzabadi FN, Shobbar ZS (2019) Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. PLoS One 14(3):0213305

    Article  CAS  Google Scholar 

  • Arora S, Singh AK, Singh YP (eds) (2017) Bioremediation of salt affected soils: an Indian perspective. Springer

    Google Scholar 

  • Arora S, Dagar JC (2019) Salinity tolerance indicators. In: Dagar J, Yadav R, Sharma P (eds) Research developments in saline agriculture. Springer, Singapore

    Google Scholar 

  • Aung K, Jiang Y, He SY (2018) The role of water in plant–microbe interactions. Plant J 93(4):771–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ, Fraune S, Hentschel U, Hirt H, Hülter N, Lachnit T, Picazo D (2018) Metaorganisms in extreme environments: do microbes play a role in organismal adaptation. Zoology 127:1–9

    Article  PubMed  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fert Soils 45(4):405–413

    Article  Google Scholar 

  • Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fert Soils 32(4):265–272

    Article  CAS  Google Scholar 

  • Bedre R, Mangu VR, Srivastava S, Sanchez LE, Baisakh N (2016) Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity. BMC Genom 17(1):657

    Article  CAS  Google Scholar 

  • Bernardes MF, Pazin M, Pereira LC, Dorta DJ (2015) Impact of pesticides on environmental and human health. Toxicology Studies-Cells, Drugs and Environment (Andreazza C y Scola G Eds.). InTech, Croacia 8:195–233

    Google Scholar 

  • Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Ann Rev Microbiol 66:265–283

    Article  CAS  Google Scholar 

  • Bharti B, Kumar S, Lee HN, Kumar R (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep 30(6):32355

    Article  CAS  Google Scholar 

  • Bharti N, Barnawal D, Maji D, Kalra A (2015) Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress. Microb Ecol 70(1):196–208

    Article  CAS  PubMed  Google Scholar 

  • Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. Biotech 29(2):379–387

    CAS  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Appl Env Microb 76(14):4626–4632

    Article  CAS  Google Scholar 

  • Biswas J, Paul AK (2017) Diversity and production of extracellular polysaccharide by halophilic microorganisms. Biodiversity Int J 1:00006

    Google Scholar 

  • Bringel F, Couée I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microb 22:6–486

    Google Scholar 

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M (2018) Soil quality–a critical review. Soil Biol Biochem 120:105–125

    Article  CAS  Google Scholar 

  • Canfora L, Bacci G, Pinzari F, Papa GL, Dazzi C, Benedetti A (2014) Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil. PLoS One 9(9):106662

    Article  CAS  Google Scholar 

  • Cao XX, Meng M, Wang YY, Wang CL, Hou LH (2011) Identification of salt-tolerant gene HOG1 in Torulopsis versatilis. Biotech Let 33(7):1449

    Article  CAS  Google Scholar 

  • Carrozzi LE, Creus CM, Barassi CA, Monterubbianesi G, Di Benedetto A (2012) Reparation of aged lettuce (Lactuca sativa) seeds by osmotic priming and Azospirillum brasilense inoculation. Botany 90(12):1093–1102

    Article  CAS  Google Scholar 

  • Caverzan A, Casassola A, Brammer SP (2016) Antioxidant responses of wheat plants under stress. Genet Mol Biol 39(1):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty K, Basak N, Bhaduri D, Ray S, Vijayan J, Chattopadhyay K, Sarkar RK (2018) Ionic basis of salt tolerance in plants: nutrient homeostasis and oxidative stress tolerance. In: Plant nutrients and abiotic stress tolerance. Springer, Singapore, pp 325–362

    Chapter  Google Scholar 

  • Chandra P, Barsainya M, Singh DP (2014) A fourier transform infrared (FTIR) spectroscopic study on cellular changes in the Marinococcus Luteus sslb 1 under different salinity regime. Int J Pharm Bio Sci 5:848–854

    Google Scholar 

  • Chandra P, Enespa (2016) Applications and mechanisms of plant growth-stimulating rhizobacteria. In: Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 37–62

    Chapter  Google Scholar 

  • Chandra P, Enespa (2017) Microbial volatiles as chemical weapons against pathogenic fungi. In: Volatiles and food security. Springer, Singapore, pp 227–254

    Google Scholar 

  • Chandra P, Enespa (2019a) Mycoremediation of environmental pollutants from contaminated soil. In: Varma A, Choudhary D (eds) Mycorrhizosphere and pedogenesis. Springer, Singapore

    Google Scholar 

  • Chandra P, Enespa (2019b) Fungal enzymes for bioremediation of contaminated soil. In: Yadav A, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Fungal Biology. Springer, Cham

    Google Scholar 

  • Chandra P, Enespa (2019c) Soil–Microbes–Plants: interactions and ecological diversity. In: Varma A, Tripathi S, Prasad R (eds) Plant microbe interface. Springer, Cham

    Google Scholar 

  • Chandra P, Enespa, Kumar M (2020) Contribution of microbes in the renovation of wetlands. In: Upadhyay A, Singh R, Singh D (eds) Restoration of wetland ecosystem: a trajectory towards a sustainable environment. Springer, Singapore

    Google Scholar 

  • Chandra P, Singh DP (2014) Removal of Cr (VI) by a halotolerant bacterium Halomonas sp. CSB 5 isolated from Sambhar salt Lake Rajasthan (India). Cell Mol Biol 60:64–72

    CAS  PubMed  Google Scholar 

  • Chandra P, Singh DP (2016) Isolation of alkaliphilic bacterium Citricoccus alkalitolerans CSB1: an efficient biosorbent for bioremediation of tannery waste water. Cell Mol Biol 62(3):135

    Google Scholar 

  • Chandra P, Singh E (2017) Applications and mechanisms of plant growth-stimulating rhizobacteria. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore

    Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    Article  CAS  PubMed  Google Scholar 

  • Chu TN, Tran BT, Van Bui L, Hoang MT (2019) Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Res Notes 12(1):11

    Article  PubMed  PubMed Central  Google Scholar 

  • Colombo C, Palumbo G, He JZ, Pinton R, Cesco S (2014) Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments 14(3):538–548

    Article  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Mol Biol Rev 53(1):121–147

    CAS  Google Scholar 

  • Cucchi A, de Rivas CS (1995) ssp genes and spore osmotolerance in Bacillus thuringiensis israelensis and Bacillus sphaericus. Curr Microbiol 31(4):228–233

    Article  CAS  PubMed  Google Scholar 

  • Cuevas J, Daliakopoulos IN, del Moral F, Hueso JJ, Tsanis IK (2019) A review of soil-improving cropping systems for soil salinization. Agronomy 9(6):295

    Article  Google Scholar 

  • Czech L, Höppner A, Kobus S, Seubert A, Riclea R, Dickschat JS, Bremer E (2019) Illuminating the catalytic core of ectoine synthase through structural and biochemical analysis. Sci Rep 9(1):364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Costa MS, Santos H (2009) Compatible solutes in microorganisms that grow at high temperature. Extremophile 5(3):265

    Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998a) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. In: Antranikian G (eds) Biotechnology of extremophiles. Advances in biochemical engineering/biotechnology, vol 61. Springer, Berlin

    Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998b) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. In: Biotechnology of extremophiles. Springer, Berlin, pp 117–153

    Google Scholar 

  • de Lourdes Moreno M, Pérez D, García M, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3(1):38–51

    Article  CAS  Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1994) Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biol Biochem 26(3):371–376

    Article  CAS  Google Scholar 

  • Egamberdieva D, Berg G, Lindström K, Räsänen LA (2013) Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of Rhizobium with root-colonizing Pseudomonas. Plant Soil 369:453–465

    Article  CAS  Google Scholar 

  • Egamberdieva D, Davranov K, Wirth S, Hashem A, Abd_Allah EF (2017) Impact of soil salinity on the plant-growth–promoting and biological control abilities of root associated bacteria. Saudi J Biolog Sci 24(7):1601–1608

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Davranov KD, Höflich G (2001) Influence of growth-promoting bacteria from Uzbekistan and Germany on the growth and nutrient uptake of cotton and wheat on different soils. Plant nutrition. Springer, Dordrecht, pp 674–675

    Chapter  Google Scholar 

  • El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA (2019) Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ Exp Bot 159:55–65

    Article  CAS  Google Scholar 

  • El-Rahman AA, Shaheen HA, El-Aziz RM, Ibrahim DS (2019) Influence of hydrogen cyanide-producing rhizobacteria in controlling the crown gall and root-knot nematode, Meloidogyne incognita. Egyptian J Biolog Pest Control 29(1):41

    Article  Google Scholar 

  • Enespa, Chandra P (2019) Fungal community for novel secondary metabolites. In: Yadav A, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Fungal biology. Springer, Cham

    Google Scholar 

  • Etesami H, Alikhani HA (2018) Bacillus species as the most promising bacterial biocontrol agents in rhizosphere and endorhiza of plants grown in rotation with each other. Eur J Plant Pathol 150(2):497–506

    Article  Google Scholar 

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 8(9):148

    Article  Google Scholar 

  • Fendrihan S, Constantinescu F, Sicuia O, Dinu S (2017) Azospirillum strains as biofertilizers and biocontrol agents-a practical review. J Adv Agric 7(3):1096–1108

    Article  Google Scholar 

  • Ferrando A, Kron SJ, Rios G, Fink GR, Serrano R (1995) Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Mol Cellular Biol 15(10):5470–5481

    Article  CAS  Google Scholar 

  • Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49(6–7):487–496

    Article  CAS  Google Scholar 

  • Getu M (2009) Ethiopian floriculture and its impact on the environment. Mizan Law Rev 3(2):240–270

    Google Scholar 

  • Gisbert C, Rus AM, Boları́n MC, López-Coronado JM, Arrillaga I, Montesinos C, Caro M, Serrano R, Moreno V (2000) The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiol 123(1):393–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microb Res 169(1):30–39

    Article  CAS  Google Scholar 

  • Gonçalves AC Jr, Nacke H, Schwantes D, Coelho GF (2014) Heavy metal contamination in brazilian agricultural soils due to application of fertilizers. Environ Risk Assess Soil Contam 26(1):105–135

    Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microb Res 206:131–140

    Article  Google Scholar 

  • Gouffi K, Pichereau V, Rolland JP, Thomas D, Bernard T, Blanco C (1998) Sucrose Is a Nonaccumulated Osmoprotectant inSinorhizobium meliloti. J Bacteriol 180(19):5044–5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene R, Timms W, Rengasamy P, Arshad M, Cresswell R (2016) Soil and aquifer salinization: toward an integrated approach for salinity management of groundwater. Integrated groundwater management. Springer, Cham, pp 377–412

    Chapter  Google Scholar 

  • Greene RS, Hairsine PB (2004) Elementary processes of soil–water interaction and thresholds in soil surface dynamics: a review. Earth Surf Process Landf J Br Geomorphol Res Group 29(9):1077–1091

    Article  CAS  Google Scholar 

  • Gu H, Ma C, Gu J, Guo J, Yan X, Huang J, Guo Z (2016) An overview of multifunctional epoxy nanocomposites. J Mat Chem 4(25):5890–5906

    CAS  Google Scholar 

  • Gunde-Cimerman N, Plemenitaš A, Oren A (2018) Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 42(3):353–375

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomic 2014:1–18

    Article  CAS  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:1–10

    Article  CAS  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hara H, Masui M (1985) Effect of NaCl concentration on the synthesis of membrane phospholipid in a halophilic bacterium. FEMS Microb Ecol 1(5):279–282

    Article  Google Scholar 

  • Hayano-Kanashiro C, Calderón-Vázquez C, Ibarra-Laclette E, Herrera-Estrella L, Simpson J (2009) Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One 4(10):e7531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiramatsu T, Yano I, Masui M (1980) Effect of NaCl concentration on the protein species and phospholipid composition of the outer membrane in a moderately halophilic bacterium. FEMS Microbiol Lett 7(4):289–292

    Article  CAS  Google Scholar 

  • Holmberg N, Bülow L (1998) Improving stress tolerance in plants by gene transfer. Trend Plant Sci 3(2):61–66

    Article  Google Scholar 

  • Hussain N, Sarwar G, Schmeisky H, Al-Rawahy S, Ahmad M (2010) Salinity and drought management in legume crops. Climate change and management of cool season grain legume crops. Springer, Dordrecht, pp 171–191

    Chapter  Google Scholar 

  • Husson F, Lê S, Pagès J (2017) Exploratory multivariate analysis by example using R. Chapman and Hall/CRC, p 8

    Google Scholar 

  • Ibekwe AM, Poss JA, Grattan SR, Grieve CM, Suarez D (2010) Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol Biochem 42(4):567–575

    Article  CAS  Google Scholar 

  • Ilangumaran G, Smith DL (2017) Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci 23(8):1768

    Article  Google Scholar 

  • Inaba M, Sakamoto A, Murata N (2001) Functional expression in Escherichia coli of low-affinity and high-affinity Na+ (Li+)/H+ antiporters of Synechocystis. J Bacteriol 183(4):1376–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indoria AK, Rao CS, Sharma KL, Reddy KS (2017) Conservation agriculture–a panacea to improve soil physical health. Curr Sci 112:1–10

    Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition. Chil J Agric Res 73(3):213–219

    Article  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33(3):797–802

    Article  Google Scholar 

  • Jiang H, Qi P, Wang T, Chi X, Wang M, Chen M, Chen N, Pan L (2019) Role of halotolerant phosphate-solubilizing bacteria on growth promotion of peanut (Arachis hypogaea) under saline soil. Ann App Biol 174(1):20–30

    Article  Google Scholar 

  • Joe MM, Devaraj S, Benson A, Sa T (2016) Isolation of phosphate solubilizing endophytic bacteria from Phyllanthus amarus Schum and Thonn: evaluation of plant growth promotion and antioxidant activity under salt stress. J App Res Med Arom Plant 3(2):71–77

    Google Scholar 

  • Joseph B, Jini D (2010) Insight into the role of antioxidant enzymes for salt tolerance in plants. Int J Bot 6(4):456–464

    Article  Google Scholar 

  • Joseph S, Murphy DJ, Bhave M (2015) Identification of salt tolerant Acacia species for saline land utilisation. Biologia 70(2):174–182

    Article  Google Scholar 

  • Ju I, Wj B, Md S, Ia O, Oj E (2018) A review: biofertilizer-a key player in enhancing soil fertility and crop productivity. J Microbiol Biotechnol Rep 7:2

    Google Scholar 

  • Kalayu G (2019) Phosphate solubilizing microorganisms: promising approach as biofertilizers. Int J Agron 2019:1–7

    Article  CAS  Google Scholar 

  • Kapardar RK, Ranjan R, Grover A, Puri M, Sharma R (2010) Identification and characterization of genes conferring salt tolerance to Escherichia coli from pond water metagenome. Bioresour Technol 101(11):3917–3924

    Article  CAS  PubMed  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170(5):319–330

    Article  CAS  PubMed  Google Scholar 

  • Kesaulya H, Hasinu JV, Tuhumury GN (2018) Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants. In: IOP Conference Series: Earth and Environmental Science, vol 102, p 012016

    Article  Google Scholar 

  • Kindzierski V, Raschke S, Knabe N, Siedler F, Scheffer B, Pflüger-Grau K, Kunte HJ (2017) Osmoregulation in the halophilic bacterium Halomonas elongata: a case study for integrative systems biology. PLoS One 12(1):e0168818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klähn S, Marquardt DM, Rollwitz I, Hagemann M (2009) Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana. J Exp Bot 60(6):1679–1689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohler C, Lourenço RF, Bernhardt J, Albrecht D, Schüler J, Hecker M, Gomes SL (2015) A comprehensive genomic, transcriptomic and proteomic analysis of a hyperosmotic stress sensitive α-proteobacterium. BMC Microbiol 15(1):71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kooistra MJ, Tovey NK (1994) Effects of compaction on soil microstructure. Dev Agric Eng 11:91–111

    Google Scholar 

  • Kour D, Rana KL, Kumar A, Rastegari AA, Yadav N, Yadav AN, Gupta VK (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh BN, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, USA, pp 321–372

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AE-L, Dhaliwal HS, Saxena AK (2019b) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer Singapore, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2019c) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer Singapore, Singapore, pp 19–65. https://doi.org/10.1007/978-981-13-7553-8_2

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019d) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Google Scholar 

  • Kraegeloh A, Amendt B, Kunte HJ (2005) Potassium transport in a halophilic member of the bacteria domain: identification and characterization of the K+ uptake systems TrkH and TrkI from Halomonas elongata DSM 2581T. J Bacteriol 187(3):1036–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2015) Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in soybean (Glycine max L. Merrill). J Plant Growth Regul 34(3):558–573

    Article  CAS  Google Scholar 

  • Kumari S, Vaishnav A, Jain S, Varma A, Choudhary DK (2016) Title. World J Microbiol. World J Microbiol Biotech 32(1):1–10

    Article  CAS  Google Scholar 

  • Ladeiro B (2012) Saline agriculture in the 21st century: using salt contaminated resources to cope food requirements. J Bot 310705–310707

    Google Scholar 

  • Laloknam S, Tanaka K, Buaboocha T, Waditee R, Incharoensakdi A, Hibino T, Takabe T (2006) Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity. Appl. Environ. Microbiol. 72(9):6018–6026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite J, Fischer D, Rouws LF, Fernandes-Júnior PI, Hofmann A, Kublik S, Schloter M, Xavier GR, Radl V (2017) Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Front Plant Sci 20(7):2064

    Google Scholar 

  • Lentes CJ, Mir SH, Boehm M, Ganea C, Fendler K, Hunte C (2014) Molecular characterization of the Na+/H+-antiporter NhaA from Salmonella typhimurium. PLoS One 9(7):e101575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Tan BK, Zhao J, Guan Z (2016) In vivo and in vitro synthesis of phosphatidylglycerol by an Escherichia coli cardiolipin synthase. J Biol Chem 291(48):25144–25153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HQ, Jiang XW (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64(2):235–241

    Article  CAS  Google Scholar 

  • Liu J, Tang L, Gao H, Zhang M, Guo C (2019) Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. J Sci Food Agric 99(1):281–289

    Article  CAS  PubMed  Google Scholar 

  • Locascio A, Andrés-Colás N, Mulet JM, Yenush L (2019) Saccharomyces cerevisiae as a tool to investigate plant potassium and sodium transporters. Int J Mol Sci 20(9):2133

    Article  CAS  PubMed Central  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology 4th edition. National Center for Biotechnology Information, Bookshelf

    Google Scholar 

  • Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54(4):1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Long X, Tian J, Liao X, Tian Y (2018) Adaptations of Bacillus shacheensis HNA-14 required for long-term survival under osmotic challenge: a multi-omics perspective. RSC Adv 8(48):27525–27536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lü JM, Lin PH, Yao Q, Chen C (2010) Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med 14(4):840–860

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76(21):6971–6981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado R, Serralheiro R (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30

    Article  Google Scholar 

  • Magallon KJ, Dinneny JR (2019) Environmental stress: salinity Ruins a Plant’s Day in the Sun. Curr Biol 29(10):360–362

    Article  CAS  Google Scholar 

  • Mahrous M, Šegvić B, Zanoni G, Khadka S, Senadheera S, Jayawickrama P (2018) The role of clay swelling and mineral neoformation in the stabilization of high plasticity soils treated with the fly ash-and metakaolin-based geopolymers. Mineral 8(4):146

    Article  CAS  Google Scholar 

  • Mandon K, Østerås M, Boncompagni E, Trinchant JC, Spennato G, Poggi MC, Le Rudulier D (2003) The Sinorhizobium meliloti glycine betaine biosynthetic genes (betICBA) are induced by choline and highly expressed in bacteroids. Mol Plant-Microbe Interact 16(8):709–719

    Article  CAS  PubMed  Google Scholar 

  • Maróti G, Kondorosi à (2014) Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00326

  • Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Env Microbiol 72(6):3887–3895

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  PubMed  Google Scholar 

  • Mengel K, Kirkby EA, Kosegarten H, Appel T (2001) Nitrogen. Principles of plant nutrition. Springer, Dordrecht, pp 397–434

    Chapter  Google Scholar 

  • Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Hess WR (2011) An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci 108(5):2124–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100(3):620–630

    Article  CAS  Google Scholar 

  • Mukhtar S, Ishaq A, Hassan S, Mehnaz S, Mirza MS, Malik KA (2017) Comparison of microbial communities associated with halophyte (Salsola stocksii) and non-halophyte (Triticum aestivum) using culture-independent approaches. Pol J Microbiol 66(3):353–364

    Article  PubMed  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16(1):15–24

    Article  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663

    Article  CAS  PubMed  Google Scholar 

  • Murínová S, Dercová K (2014) Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int J Microbiol 2014:1–16

    Article  CAS  Google Scholar 

  • Nabti E, Schmid M, Hartmann A (2015) Application of halotolerant bacteria to restore plant growth under salt stress. Halophiles. Springer, Cham, pp 235–259

    Chapter  Google Scholar 

  • Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Med Cell Longev 2016:1–23

    Article  CAS  Google Scholar 

  • Nogales J, Campos R, BenAbdelkhalek H, Olivares J, Lluch C, Sanjuan J (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol Plant-Microbe Interact 15(3):225–232

    Article  CAS  PubMed  Google Scholar 

  • Normand P, Caumette P, Goulas P, Pujic P, Wisniewski-Dyé F (2015) Adaptations of prokaryotes to their biotopes and to physicochemical conditions in natural or anthropized environments. Environmental microbiology: fundamentals and applications. Springer, Dordrecht, pp 293–351

    Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Ahmed AH (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke SM, Herskowitz I (1998) The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12(18):2874–2886

    Article  PubMed  PubMed Central  Google Scholar 

  • Odoh CK (2017) Plant growth promoting rhizobacteria (PGPR): a bio protectant bio inoculant for sustainable agrobiology. A review. Int J Adv Res Biol Sci 4:123–142

    CAS  Google Scholar 

  • Ohno Y, Yano I, Masui M (1979) Effect of NaCl concentration and temperature on the phospholipid and fatty acid compositions of a moderately halophilic bacterium, Pseudomonas halosaccharolytica. J Biochem 85(2):413–421

    Article  CAS  PubMed  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotech 33(11):197

    Article  CAS  Google Scholar 

  • Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Mol Biol Rev 58(1):27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omar MN, Osman ME, Kasim WA, El-Daim IA (2009) Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. Salinity and water stress. Springer, Dordrecht, pp 133–147

    Chapter  Google Scholar 

  • Ondrasek G, Rengel Z, Veres S (2011) Soil salinisation and salt stress in crop production. Abiotic stress in plants-Mech Adapt. https://doi.org/10.5772/22248

    Google Scholar 

  • Or D, Smets BF, Wraith JM, Dechesne A, Friedman SP (2007) Physical constraints affecting bacterial habitats and activity in unsaturated porous media-a review. Adv Water Resour 30(6–7):1505–1527

    Article  Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechl 28(1):56–63

    Article  CAS  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Sal Syst 4(1):2

    Article  CAS  Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13(8):1908–1923

    Article  PubMed  CAS  Google Scholar 

  • Osteras M, Boncompagni E, Vincent N, Poggi MC, Le Rudulier D (1998) Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfate is metabolized into glycine betaine. Proc Natl Acad Sci 95(19):11394–11399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patchett RA, Kelly AF, Kroll RG (1992) Effect of sodium chloride on the intracellular solute pools of Listeria monocytogenes. Appl Environ Microbiol 58(12):3959–3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payakapong W, Tittabutr P, Teaumroong N, Boonkerd N, Singleton PW, Borthakur D (2006) Identification of two clusters of genes involved in salt tolerance in Sinorhizobium sp. strain BL3. Symbiosis 41(1):47–53

    CAS  Google Scholar 

  • Peng J, Wu D, Liang Y, Li L, Guo Y (2019) Disruption of acdS gene reduces plant growth promotion activity and maize saline stress resistance by Rahnella aquatilis HX2. J B Microbiol 59(4):402–411

    Article  CAS  Google Scholar 

  • Pérez-Arellano I, Carmona-Álvarez F, Martínez AI, Rodríguez-Díaz J, Cervera J (2010) Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Protein Sci 19(3):372–382

    PubMed  PubMed Central  Google Scholar 

  • Pichler H, Emmerstorfer-Augustin A (2018) Modification of membrane lipid compositions in single-celled organisms-from basics to applications. Method 147:50–65

    Article  CAS  Google Scholar 

  • Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33(3):183–209

    Article  CAS  PubMed  Google Scholar 

  • Poeplau C, Helfrich M, Dechow R, Szoboszlay M, Tebbe CC, Don A, Geerts R (2019) Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands. Soil Biol Biochem 130:167–176

    Article  CAS  Google Scholar 

  • Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29(2):397–407

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 1. Diversity and enzymes perspectives. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Reshetnikov AS, Khmelenina VN, Mustakhimov II, Kalyuzhnaya M, Lidstrom M, Trotsenko YA (2011) Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria. Extremophile 15(6):653

    Article  CAS  Google Scholar 

  • Reshetnikov AS, Khmelenina VN, Trotsenko YA (2006) Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph “Methylomicrobium alcaliphilum 20Z”. Arch Microbiol 184(5):286–297

    Article  CAS  PubMed  Google Scholar 

  • Roberts MF (2005a) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1(1):5–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts MF (2005b) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1(1):5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13(6):309–317

    Article  PubMed  Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) A novel Azotobacter vinellandii (SRI Az 3) functions in salinity stress tolerance in rice. Plant Signal Behav 9(7):511–523

    Article  CAS  Google Scholar 

  • Sánchez-Porro C, Martin S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94(2):295–300

    Article  PubMed  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Saum SH, Müller V (2008) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Sal Syst 4(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schjønning P, Munkholm LJ, Moldrup P, Jacobsen OH (2002) Modelling soil pore characteristics from measurements of air exchange: the long-term effects of fertilization and crop rotation. Euro J Soil Sci 53(2):331–339

    Article  Google Scholar 

  • Schmidt RR, Weits DA, Feulner CF, van Dongen JT (2018) Oxygen sensing and integrative stress signaling in plants. Plant Physiol 176(2):1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2(1):587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi-Ying Z, Cong F, Yong-xia W, Yun-sheng X, Wei X, Xiao-Long C (2018) Salt-tolerant and plant growth-promoting bacteria isolated from high-yield paddy soil. Canad J Microbiol 64(12):968–978

    Article  CAS  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131

    Article  CAS  PubMed  Google Scholar 

  • Shu Y, Li W, Zhao J, Liu Y, Guo C (2018) Transcriptome sequencing and expression profiling of genes involved in the response to abiotic stress in Medicago ruthenica. Genet Mol Biol 41(3):638–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddikee MA, Sundaram S, Chandrasekaran M, Kim K, Selvakumar G, Sa T (2015) Halotolerant bacteria with ACC deaminase activity alleviates salt stress effect in canola seed germination. J Korean Soc Appl Biol Chem 58(2):237–241

    Article  CAS  Google Scholar 

  • Silini A, Cherif-Silini H, Yahiaoui B (2016) Growing varieties durum wheat (Triticum durum) in response to the effect of osmolytes and inoculation by Azotobacter chroococcum under salt stress. Afr J Microbiol Res 10(12):387–399

    Article  CAS  Google Scholar 

  • Singh R, Upadhyay AK, Chandra P, Singh DP (2018) Sodium chloride incites reactive oxygen species in green algae Chlorococcum humicola and Chlorella vulgaris: Implication on lipid synthesis, mineral nutrients and antioxidant system. Bioresour Technol 270:489–497

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Jha P, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67

    Article  CAS  PubMed  Google Scholar 

  • Sohlenkamp C, Geiger O (2016) Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 40(1):133–159

    Article  CAS  PubMed  Google Scholar 

  • Soto-Padilla MY, Valenzuela-Encinas C, Dendooven L, Marsch R, Gortáres-Moroyoqui P, Estrada-Alvarado MI (2014) Isolation and phylogenic identification of soil haloalkaliphilic strains in the former Texcoco Lake. Int J Env Health Res 24(1):82–90

    Article  CAS  Google Scholar 

  • Stöveken N, Pittelkow M, Sinner T, Jensen RA, Heider J, Bremer E (2011) A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501. J Bacteriol 193(17):4456–4468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stritzler M, Elba P, Berini C, Gomez C, Ayub N, Soto G (2018) High-quality forage production under salinity by using a salt-tolerant AtNXH1-expressing transgenic alfalfa combined with a natural stress-resistant nitrogen-fixing bacterium. J Biotech 276:42–45

    Article  CAS  Google Scholar 

  • Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, India, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7

    Chapter  Google Scholar 

  • Suárez R, Wong A, Ramírez M, Barraza A, Orozco MDC, Cevallos MA, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant-Microbe Interact 21(7):958–966

    Article  PubMed  CAS  Google Scholar 

  • Teh CY, Shaharuddin NA, Ho CL, Mahmood M (2016) Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress. Acta Physiol Plant 38(6):151

    Article  CAS  Google Scholar 

  • Thomas J, Apte SK (1984) Sodium requirement and metabolism in nitrogen-fixing cyanobacteria. J Biosci 6(5):771–794

    Article  CAS  Google Scholar 

  • Tiwari G, Duraivadivel P, Sharma SPH (2018) 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress. Sci Rep 30(1):17513

    Article  CAS  Google Scholar 

  • Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, Lehndorff E, Mikutta R, Peth S, Prechtel A, Ray N (2018) Microaggregates in soils. J Plant Nutr Soil Sci 181(1):104–136

    Article  CAS  Google Scholar 

  • Ulukanli Z, Digrak M (2002) Alkaliphilic micro-organisms and habitats. Turk J Biol 26(3):181–191

    Google Scholar 

  • Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedo 21(2):214–222

    CAS  Google Scholar 

  • Vaddepalli P, Fulton L, Wieland J, Wassmer K, Schaeffer M, Ranf S, Schneitz K (2017) The cell wall-localized atypical β-1, 3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana. Development 144(12):2259–2269

    Article  CAS  PubMed  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Choudhary DK (2015) Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. J App Microbiol 119(2):539–551

    Article  CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR‐mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56(11):1274–1288

    Article  CAS  PubMed  Google Scholar 

  • Vandegehuchte ML, de la Peña E, Bonte D (2010) Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics. PLoS One 5(9):e12937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016b) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16(1):86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution: volume 1: microbes for sustainable crop production. Springer Singapore, Singapore, pp 125–149. https://doi.org/10.1007/978-981-10-6241-4_7

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts. Springer Singapore, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4_22

    Google Scholar 

  • Verma P, Yadav AN, Kumar V, Khan MA, Saxena AK (2018) Microbes in termite management: potential role and strategies. In: Khan MA, Ahmad W (eds) Termites and sustainable management: volume 2-economic losses and management. Springer International Publishing, Cham, pp 197–217. https://doi.org/10.1007/978-3-319-68726-1_9

    Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Mole 29(5):573

    Article  CAS  Google Scholar 

  • Ventosa A, de la Haba RR, Sánchez-Porro C, Papke RT (2015) Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 25:80–87

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62(2):504–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wai Liew C, Illias RM, Muhammad Mahadi N, Najimudin N (2007) Expression of the Na+/H+ antiporter gene (g1-nhaC) of alkaliphilic Bacillus sp. G1 in Escherichia coli. FEMS Microbiol Lett 276(1):114–122

    Article  CAS  Google Scholar 

  • Wang JD, Levin PA (2009) Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7(11):822–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang C, Wang C, Cao X, Hou L (2014) Torulopsis versatilis strains with increased salt tolerance carry mutations in the glycerol transporter gene FPS 1. Int J Food Sci Tech 49(3):673–678

    Article  CAS  Google Scholar 

  • Warrence NJ, Bauder JW, Pearson KE (2002) Basics of salinity and sodicity effects on soil physical properties. Departement of Land Resources and Environmental Sciences, Montana State University-Bozeman, MT, pp 1–29

    Google Scholar 

  • Watson H (2015) Biological membranes. Essay Biochem 15(59):43–69

    Article  Google Scholar 

  • Wei W, Jiang J, Yang SS (2004) Mutagenesis and complementation of relA from Sinorhizobium meliloti 042BM as a salt tolerance involvement gene. Ann Microbiol 54:317–324

    CAS  Google Scholar 

  • Weinisch L, Kühner S, Roth R, Grimm M, Roth T, Netz DJA, Filker S (2018) Identification of osmoadaptive strategies in the halophile, heterotrophic ciliate Schmidingerothrix salinarum. PLoS Biol 16(1):e2003892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, van der Heide T, Smith LT (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol Part A Mol Int Physiol 130(3):437–460

    Article  CAS  Google Scholar 

  • Xiao JP, Zhang LL, Zhang HQ, Miao LX (2017) Identification of genes involved in the responses of tangor (C. reticulata × C. sinensis) to drought stress. BioMed Res Int 2017:1–15

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Kaushik R, Dey R, Pal KK, Saxena AK (2015c) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015d) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629

    Article  Google Scholar 

  • Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:48–55

    CAS  Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019a) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043. https://doi.org/10.2478/s11756-019-00259-2

    Article  Google Scholar 

  • Yadav AN, Kour D, Sharma S, Sachan SG, Singh B, Chauhan VS, Sayyed RZ, Kaushik R, Saxena AK (2019b) Psychrotrophic microbes: biodiversity, mechanisms of adaptation, and biotechnological implications in alleviation of cold stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer Singapore, Singapore, pp 219–253. https://doi.org/10.1007/978-981-13-6536-2_12

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019c) Recent advancement in white biotechnology through fungi volume 1: diversity and enzymes perspectives. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019d) Recent advancement in white biotechnology through fungi. Volume 2: perspective for value-added products and environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019e) Recent advancement in white biotechnology through fungi. Volume 3: perspective for sustainable environments. Springer International Publishing, Cham

    Google Scholar 

  • Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in crops: diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, USA, pp 305–332

    Chapter  Google Scholar 

  • Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. USA, pp 13–41. https://doi.org/10.1016/b978-0-444-63994-3.00002-3

    Chapter  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018c) Biodiversity of the Genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18. https://doi.org/10.1016/b978-0-444-63501-3.00001-6

    Chapter  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018d) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution-volume 2: microbes for sustainable agro-ecosystem. Springer, Singapore, pp 197–240. https://doi.org/10.1007/978-981-10-7146-1_11

    Google Scholar 

  • Yamamoto K, Shiwa Y, Ishige T, Sakamoto H, Tanaka K, Uchino M, Tanaka N, Oguri S, Saitoh H (2018) Tsushima S (2018) Bacterial diversity associated with the rhizosphere and endosphere of two halophytes: Glaux maritima and Salicornia europaea. Front Microbiol 9:2878

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan N, Marschner P, Cao W, Zuo C, Qin W (2015) Influence of salinity and water content on soil microorganisms. Int Soil Water Con Res 3(4):316–323

    Article  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Ma LA, Jiang H, Wu G, Dong H (2016) Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep 26(6):25078

    Article  CAS  Google Scholar 

  • Yang XD, Ali A, Xu YL, Jiang LM, Lv GH (2019) Soil moisture and salinity as main drivers of soil respiration across natural xeromorphic vegetation and agricultural lands in an arid desert region. Catena 177:126–133

    Article  CAS  Google Scholar 

  • Zahran HH (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fert Soil 25(3):211–223

    Article  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran HH, Ahmad MS, Afkar EA (1995) Isolation and characterization of nitrogen-fixing moderate halophilic bacteria from saline soils of Egypt. J Basic Microbiol 35(4):269–275

    Article  Google Scholar 

  • Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Müller J, Baluska F (2016) A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J Plant Physiol 191:111–119

    Article  CAS  PubMed  Google Scholar 

  • Zhao BS, Roundtree IA, He C (2017) Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18(1):31

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Kong W, Weatherspoon-Griffin N, Clark-Curtiss J, Shi Y (2011) Mg 2+ facilitates leader peptide translation to induce riboswitch-mediated transcription termination. EMBO J 30(8):1485–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Enespa, Prakash, J., Chandra, P. (2020). Halophilic Microbes from Plant Growing Under the Hypersaline Habitats and Their Application for Plant Growth and Mitigation of Salt Stress. In: Yadav, A., Singh, J., Rastegari, A., Yadav, N. (eds) Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-38453-1_11

Download citation

Publish with us

Policies and ethics