Skip to main content
Log in

Identification of salt-tolerant gene HOG1 in Torulopsis versatilis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

To understand the osmo-adaptation mechanism in Torulopsis versatilis (T), we investigated the salt-tolerant gene HOG1 from the wild-type and a salt-tolerant mutant strain (T5) constructed using genome shuffling. The HOG1 genes from T and T5 were sequenced and revealed several mutations had occurred. The expression level of T5HOG1 was stronger than that of THOG1, indicating a reason for the increase of salt-tolerance in T. versatilis. Moreover, overexpression of T5HOG1 and THOG1 improved the tolerance of salt in Saccharomyces cerevisiae. Identification and overexpression of THOG1 and T5HOG1 from the wild-type T. versatilis and the mutant T. versatilis, respectively, play an important role for the osmo-adaption mechanism of the T. versatilis used in soy-sauce fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cao X, Hou L, Lu M, Wang C (2010) Improvement of soy-sauce flavour by genome shuffling in Candida versatilis to improve salt stress resistance. Int J Food Sci Tech 45:17–22

    Article  CAS  Google Scholar 

  • Devantier R, Scheithauer B, Granato VS, Pedersen S, Olsson L (2005) Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnol Bioeng 90:703–714

    Article  PubMed  CAS  Google Scholar 

  • Han KH, Prade RA (2002) Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol Microbiol 43(5):1065–1078

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Mol Biol Rev 66:300–372

    Article  CAS  Google Scholar 

  • Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Method Enzymol 428:29–45

    Article  CAS  Google Scholar 

  • Jones RP (1989) Biological principles for the effects of ethanol. Enzyme Microb Technol 11:130–153

    Article  CAS  Google Scholar 

  • Lambert M, Neish AC (1950) Rapid method for estimation of glycerol in fer-mentation solutions. Can J Res B 28:83–89

    Article  Google Scholar 

  • Lenassi M, Vaupotic T, Gunde-Cimerman N, Plemenitas A (2007) The MAP kinase HwHog1 from the halophilic black yeast Hortaea werneckii: coping with stresses in solar salterns. Saline Syst 3:1–11

    Article  Google Scholar 

  • Luh BS (1995) Industrial production of soy sauce. J Ind Microbiol Biol 14:467–471

    Article  CAS  Google Scholar 

  • Maayan I, Engelberg D (2009) The yeast MAPK Hog1 is not essential for immediate survival under osmostress. FEBS Lett 583:2015–2020

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245

    Article  PubMed  CAS  Google Scholar 

  • Nadal E, Alepuz PM, Posas F (2002) Dealing with osmo stress through MAP kinase activation. EMBO Rep 3:735–740

    Article  PubMed  Google Scholar 

  • O’Rourke SM, Herskowitz I (1998) The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12:2874–2886

    Article  PubMed  Google Scholar 

  • Proft M, Struhl K (2004) MAP kinase-mediated stress relief that precedes and regulates the timing of transcription alinduction. Cell 118:351–361

    Article  PubMed  CAS  Google Scholar 

  • Rotbstein RJ (1985) DNA cloning a practical approach. Cloning Yeast 2:45–66

    Google Scholar 

  • Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as carrier. Curr Genet 16:339–346

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Akita H, Higuchi Y, Tsujimatsu R, Kaneta T, Tamai Y (2008) Heterologous expression of Naþ/Hþ antiporter gene (CvNHA1) from salt-tolerant yeast Candida versatilis in Saccharomyces cerevisiae Naþ-transporter deficient mutants. Biosci Biotechnol Biochem 72(4):1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Westfall PJ, Patterson JC, Chen RE, Thorner J (2008) Stress resistance and signal fidelity independent of nuclear MAPK function. Biochemistry 34:12212–12217

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31071589), the National Science Foundation for Post-doctoral Scientists of China and the projects of China (10ZCZDSY07000, 2008BAI63B06 and 2009BADB9B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, XX., Meng, M., Wang, YY. et al. Identification of salt-tolerant gene HOG1 in Torulopsis versatilis . Biotechnol Lett 33, 1449–1456 (2011). https://doi.org/10.1007/s10529-011-0586-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0586-8

Keywords

Navigation