Skip to main content

Problem of Mercury Toxicity in Crop Plants: Can Plant Growth Promoting Microbes (PGPM) Be an Effective Solution?

  • Chapter
  • First Online:
Field Crops: Sustainable Management by PGPR

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 23))

Abstract

Mercury is ranked as the most toxic heavy metals. It enters into the environment due to some natural processes and anthropogenic activities. It has a property of bioaccumulation into the food chain through uptake by crop plants from the contaminated agricultural lands, leading to detrimental impact on human health. Mercury has the toxic effect on plants as it disturbs many biological processes, including photosynthesis, respiration, transpiration, cell division and so on. Phytoremediation involves several plant species which have the ability to accumulate or degrade contaminants, including heavy metals. Another important strategy is the utilization of transgenic plants transformed with bacterial mer genes to increase phytoremediation of mercury. The mercury-resistant plant growth promoting microbes (PGPM) enhance plant growth under mercury stress as well as increase the mercury uptake by plants. This chapter summarizes the present understanding toward the mercury toxicity and their molecular responses in plants. It also illustrates the plethora of mechanism adapted by PGPM for plant growth promotion and detoxification of mercury. It also highlights the paradigms for synergistic use of PGPM for improved phytoremediation of mercury from agricultural lands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AMAP/UNEP (2013) AMAP/UNEP geospatially distributed mercury emissions dataset 2010v1. http://www.amap.no/mercury-emissions/datasets

  • Amin A, Latif Z (2017) Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L. J Basic Microbiol 57:204–217

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS (2017) Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: a review. J Environ Manag 198:132–143

    Article  CAS  Google Scholar 

  • Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot 2012:848614

    Google Scholar 

  • Balan BM, Shini S, Krishnan KP, Mohan M (2018) Mercury tolerance and biosorption in bacteria isolated from Ny-Alesund, Svalbard, Arctic. J Basic Microbiol 58:286–295

    Article  CAS  Google Scholar 

  • Beckers F, Rinklebe J (2017) Cycling of mercury in the environment: sources, fate, and human health implications: a review. Crit Rev Environ Sci Technol 47:693–794

    Article  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:6808–6813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ (2009) New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ Microbiol 11:1079–1091

    Article  CAS  PubMed  Google Scholar 

  • Bücker-Neto L, Paiva AL, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40:373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatziefthimiou AD, Crespo-Medina M, Wang Y, Vetriani C, Barkay T (2007) The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs. Extremophiles 11:469–479

    Article  CAS  PubMed  Google Scholar 

  • Che D, Meagher RB, Heaton AC, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol J 1:311–319

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen YA, Chi WC, Trinh NN, Huang LY, Chen YC, Cheng KT et al (2014) Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings. PLoS One 9:e95163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien MF, Narita M, Lin KH, Matsui K, Huang CC, Endo G (2010) Organomercurials removal by heterogeneous merB genes harboring bacterial strains. J Biosci Bioeng 110:94–98

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury AS, Das P, Sarkar I, Islam R, Aksharin L, Parvin F, Islam Z, Faris M, Shaekh MP (2015) Phytoremediation of heavy metals (Ar, Cd, Pb) using transgenic rice plants-an overview. Int J Sci Eng Res 6:878

    Google Scholar 

  • Clark D, Weiss AA, Silver S (1977) Mercury and organomercurial volatilization activities associated with plasmids in Pseudomonas aeruginosa and Pseudomonas putida. J Bacteriol 132:186–196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28:103–110

    Article  CAS  PubMed  Google Scholar 

  • Czakó M, Feng X, He Y, Liang D, Márton L (2005) Genetic modification of wetland grasses for phytoremediation. Zeitschrift für Naturforschung C 60:285–291

    Article  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–214

    Article  CAS  Google Scholar 

  • Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res 21:2642–2653

    Article  CAS  Google Scholar 

  • Dash HR, Sahu M, Mallick B, Das S (2017a) Functional efficiency of MerA protein among diverse mercury resistant bacteria for efficient use in bioremediation of inorganic mercury. Biochimie 142:207–215

    Article  CAS  PubMed  Google Scholar 

  • Dash HR, Basu S, Das S (2017b) Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B. Arch Microbiol 199:445–455

    Article  CAS  PubMed  Google Scholar 

  • Desale P, Patel B, Singh S, Malhotra A, Nawani N (2014) Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals. J Basic Microbiol 54:781–791

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, SvatoÅ¡ A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  PubMed  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  • Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Safety 147:175–191

    Article  CAS  PubMed  Google Scholar 

  • Ferrara R (1998) Atmospheric mercury sources in the Mt. Amiata area, Italy. Sci Total Environ 213:13–23

    Article  CAS  Google Scholar 

  • Ferrara R (2000) Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin. Sci Total Environ 259:115–121

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo NL, Canário J, O’Driscoll NJ, Duarte A, Carvalho C (2016) Aerobic Mercury-resistant bacteria alter mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicol Environ Safety 124:60–67

    Article  CAS  PubMed  Google Scholar 

  • Frossard A, Hartmann M, Frey B (2017) Tolerance of the forest soil microbiome to increasing mercury concentrations. Soil Biol Biochem 105:162–176

    Article  CAS  Google Scholar 

  • Gadd GM (2010) Metals: minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gangwar S, Singh VP, Prasad SM, Maurya JN (2010) Modulation of manganese toxicity in Pisum sativum L. seedlings by kinetin. Sci Hortic 126:467–474

    Article  CAS  Google Scholar 

  • Giovanella P, Cabral L, Bento FM, Gianello C, Camargo FAO (2016) Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A. New Biotechnol 33:216–223

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Patten CL, Holguin G et al (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Gondor OK, Pál M, Darkó É, Janda T, Szalai G (2016) Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.). PLoS One 11:e0160157

    Google Scholar 

  • Gontia-Mishra I, Sasidharan S, Tiwari S (2014) Recent developments in use of 1-amino cyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol Lett 36:889–898

    Article  CAS  PubMed  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J Plant Grow Regul 35:1000–1012

    Article  CAS  Google Scholar 

  • Gontia-Mishra I, Sapre S, Kachare S, Tiwari S (2017a) Molecular diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing PGPR from wheat (Triticum aestivum L.) rhizosphere. Plant Soil 414:213–227

    Article  CAS  Google Scholar 

  • Gontia-Mishra I, Sapre S, Tiwari S (2017b) Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3:185–190

    Article  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377

    Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a Review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  • Gupta S, Nirwan J (2015) Evaluation of mercury biotransformation by heavy metal-tolerant Alcaligenes strain isolated from industrial sludge. Int J Environ Sci Technol 12:995–1002

    Article  CAS  Google Scholar 

  • Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury-resistant growth-promoting fluorescent pseudomonads. Microbiol Res 160:385–388

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang L, Lin M, Yan Y (2015) 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25:1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Haque S, Zeyaullah M, Nabi G, Srivastava PS, Ali A (2010) Transgenic tobacco plant expressing environmental E. coli merA gene for enhanced volatilization of ionic mercury. J Microbiol Biotechnol 20:917–924

    Article  CAS  PubMed  Google Scholar 

  • Heaton AC, Rugh CC, Kim T, Meagher RB (2003) Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–2947

    Article  CAS  PubMed  Google Scholar 

  • Hesse E, O’Brien S, Tromas N, Bayer F, Luján AM, van Veen EM, Hodgson DJ, Buckling A (2018) Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol Lett 21:117–127

    Article  PubMed  Google Scholar 

  • Hindersah R, Mulyani O, Osok R (2017) Proliferation and exopolysaccharide production of Azotobacter in the presence of mercury. Biodivers J 8:21–26

    Google Scholar 

  • Hindersah R, Handyman Z, Indriani FN, Suryatmana P, Nurlaeny N (2018) Azotobacter population, soil nitrogen and groundnut growth in mercury-contaminated tailing inoculated with Azotobacter. J Degraded Mining Lands Manag 5:1269–1274

    Article  Google Scholar 

  • Hseu ZY, Su SW, Lai HY, Guo HY, Chen TC, Chen ZS (2010) Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: new aspects for food safety regulation and sustainable agriculture. Soil Sci Plant Nutr 56:31–52

    Article  CAS  Google Scholar 

  • Huang CC, Narita M, Yamagata T, Endo G, Silver S (2002) Characterization of two regulatory genes of the mercury resistance determinants from TnMERI1 by luciferase-based examination. Gene 301:13–20

    Article  CAS  PubMed  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison AR (2003) Mercury pollution and remediation: the chemist’s response to a global crisis. J Chem Crystallogr 33:631–645

    Article  CAS  Google Scholar 

  • Im Choi Y, Noh EW, Lee HS, Han MS, Lee JS, Choi KS (2007) Mercury-tolerant transgenic poplars expressing two bacterial mercury-metabolizing genes. J Plant Biol 50:658

    Article  Google Scholar 

  • Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummonii. Chemosphere 65:591–598

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Gontia I, Hartmann A (2012) The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth promoting potential. Plant Soil 356:265–277

    Article  CAS  Google Scholar 

  • Kalaivanan D, Ganeshamurthy AN (2016) Mechanisms of heavy metal toxicity in plants. In: Rao N, Shivashankara K, Laxman R (eds) Abiotic stress physiology of horticultural crops. Springer, New Delhi, pp 85–102

    Chapter  Google Scholar 

  • Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73:6317–6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavita B, Shukla S, Kumar GN, Archana G (2008) Amelioration of phytotoxic effects of Cd on mung bean seedlings by gluconic acid secreting rhizobacterium Enterobacter asburiae PSI3 and implication of role of organic acid. World J Microbiol Biotechnol 24:2965–2972

    Article  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Hayashi E, Ohkawa H, Ohkawa Y (2002) Phytotoxicity and metabolism of ethofumesate in transgenic rice plants expressing the human CYP2B6 gene. Pesticide Biochem Physiol 74:139–147

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  CAS  Google Scholar 

  • Kiyono M, Pan-Hou H (1999) The merG gene product is involved in phenylmercury resistance in Pseudomonas strain K-62. J Bacteriol 181:726–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schiroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant Cell Environ 36:1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Smita K, Flores LC (2017) Plant mediated detoxification of mercury and lead. Arab J Chem 10:S2335–S2342

    Article  CAS  Google Scholar 

  • Lafrance-Vanasse J, Lefebvre M, Di Lello P, Sygusch J, Omichinski JG (2009) Crystal structures of the organomercurial lyase merb in its free and mercury-bound forms insights into the mechanism of methylmercury degradation. J Biol Chem 284:938–944

    Article  CAS  PubMed  Google Scholar 

  • Lebrazi S, Fikri-Benbrahim K (2018) Rhizobium-legume symbiosis: heavy metal effects and principal approaches for bioremediation of contaminated soil. In: Meena R, Das A, Yadav G, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 205–233

    Chapter  Google Scholar 

  • Lee J, Bae H, Jeong J, Lee JY, Yang YY, Hwang I, Martinoia E, Lee Y (2003) Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol 133:589–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HY, Wei DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18

    Article  Google Scholar 

  • Ma Y, Oliveira RS, Wu L, Luo Y, Rajkumar M, Rocha I, Freitas H (2015) Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. J Toxicol Environ Health Part A 78:931–944

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Ma Q, Grones P, Robert S (2018) Auxin signaling: a big question to be addressed by small molecules. J Exp Bot 69:313–328

    Article  CAS  PubMed  Google Scholar 

  • Maestri E, Marmiroli N (2011) Transgenic plants for phytoremediation. Int J Phytoremediation 13:264–279

    Article  PubMed  Google Scholar 

  • Mahbub KR, Krishnan K, Megharaj M, Naidu R (2016a) Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere 144:330–337

    Article  CAS  PubMed  Google Scholar 

  • Mahbub KR, Krishnan K, Naidu R, Megharaj M (2016b) Mercury resistance and volatilization by Pseudoxanthomonas sp. SE1 isolated from soil. Environ Technol Innov 6:94–104

    Article  Google Scholar 

  • Mason RP, Choi AL, FitzgeraldWF Hammerschmidt CR, Lamborg CH, Soerensen AL, Sunderland EM (2012) Mercury biogeochemical cycling in the ocean and policy implications. Environ Res 119:101–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathema VB, Thakuri BC, Sillanpää M (2011) Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Arch Microbiol 193:837–844

    Article  CAS  PubMed  Google Scholar 

  • Mathew DC, Ho YN, Gicana RG, Mathew GM, Chien MC, Huang CC (2015) A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury. PLoS One 10:e0121178

    Google Scholar 

  • Meagher RB, Heaton AC (2005) Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Biotechnol 32:502–513

    Article  CAS  PubMed  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Mobeen N, Latif Z (2016) Characterization of mercury resistant and growth promoting Enterobacter sp. from rhizosphere to use as a biofertilizer. Adv Life Sci 3:36–41

    CAS  Google Scholar 

  • Møller AK, Barkay T, Hansen MA, Norman A, Hansen LH, Sørensen SJ, Boyd ES, Kroer N (2014) Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. FEMS Microbiol Ecol 87:52–63

    Article  CAS  PubMed  Google Scholar 

  • Muddarisna N, Krisnayanti BD, Utami SR, Handayanto E (2013) Phytoremediation of mercury-contaminated soil using three wild plant species and its effect on maize growth. Appl Ecol Environ Sci 1:27–32

    CAS  Google Scholar 

  • Mukkata K, Kantachote D, Wittayaweerasak B, Techkarnjanaruk S, Mallavarapu M, Naidu R (2015) Distribution of mercury in shrimp ponds and volatilization of Hg by isolated resistant purple non-sulfur bacteria. Water Air Soil Pollut 226:148

    Article  CAS  Google Scholar 

  • Nascimento AM, Chartone-Souza E (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res 2:92–101

    PubMed  Google Scholar 

  • Neilands J (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 45:26723–26726

    Article  Google Scholar 

  • Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2:353–368

    Article  CAS  Google Scholar 

  • Ní Chadhain SM, Schaefer JK, Crane S, Zylstra GJ, Barkay T (2006) Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment. Environ Microbiol 8:1746–1752

    Article  CAS  PubMed  Google Scholar 

  • Nocelli N, Bogino PC, Banchio E, Giordano W (2016) Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials 9:418

    Article  CAS  PubMed Central  Google Scholar 

  • Nonnoi F, Chinnaswamy A, García de la Torre VS, Coba de la Peña T, Lucas MM, Pueyo JJ (2012) Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes Medicago spp. and Trifolium spp. growing in mercury contaminated soils. Appl Soil Ecol 61:49–59

    Article  Google Scholar 

  • Ortiz-Ojeda P, Ogata-Gutiérrez K, Zúñiga-Dávila D (2017) Evaluation of plant growth promoting activity and heavy metal tolerance of psychrotrophic bacteria associated with maca (Lepidium meyenii Walp.) rhizosphere. AIMS Microbiology 3:279–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osmolovskaya N, Vu D, Kuchaeva L (2018) The role of organic acids in heavy metal tolerance in plants. Biol Comm 63:9–16

    Article  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Water Air Soil Pollut 184(1–4):105–126

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of host plant root system. Appl Environ Microbiol 48:3795–3801

    Article  CAS  Google Scholar 

  • Pietro-Souza W, Mello IS, Vendruscullo SJ, da Silva GF, da Cunha CN, White JF, Soares MA (2017) Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination. PLoS One 12:e0182017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pirrone N, Costa P, Pacyna JM, Ferrara R (2001) Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region. Atmos Environ 35:2997–3006

    Article  CAS  Google Scholar 

  • Powlowski J, Sahlman L (1999) Reactivity of the two essential cysteine residues of the periplasmic mercuric ion-binding protein, MerP. J Biol Chem 274:33320–33326

    Article  CAS  PubMed  Google Scholar 

  • Puglisi I, Faedda R, Sanzaro V, Piero ARL, Petrone G, Cacciola SO (2012) Identification of differentially expressed genes in response to mercury I and II stress in Trichoderma harzianum. Gene 506:325–330

    Article  CAS  PubMed  Google Scholar 

  • Pushkar B, Sevak P, Sounderajan S (2018) Assessment of the bioremediation efficacy of the mercury resistant bacterium isolated from the Mithi River. Water Sci Technol Water Supply, ws2018064. https://doi.org/10.2166/ws.2018.064

  • Quiñones MA, Ruiz-Díez B, Fajardo S, López-Berdonces MA, Higueras PL, Fernández-Pascual M (2013) Lupinus albus plants acquire mercury tolerance when inoculated with an Hg-resistant Bradyrhizobium strain. Plant Physiol Biochem 73:168–175

    Article  CAS  PubMed  Google Scholar 

  • Rafique A, Amin A, Latif Z (2015) Screening and characterization of mercury-resistant nitrogen fixing bacteria and their use as biofertilizers and for mercury bioremediation. Pakistan J Zool 47:1271–1277

    CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Reddy MS, Prasanna L, Marmeisse R, Fraissinet-Tachet L (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 160:2235–2242

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, pp 193–229

    Google Scholar 

  • Reniero D, Galli E, Barbieri P (1995) Cloning and comparison of mercury and organomercurial resistance determinants from a Pseudomonas stutzeri plasmid. Gene 166:77–82

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rizvi A, Khan MS (2017) Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1. Chemosphere 185:942–952

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925

    Article  CAS  PubMed  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Diez B, Quinones MA, Fajardo S, Lopez MA, Higueras P, Fernandez-Pascual M (2012) Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils. Appl Microbiol Biotechnol 96:543–554

    Article  CAS  PubMed  Google Scholar 

  • Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T (2017) Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. Biomed Res Int 2017:6509648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  PubMed  Google Scholar 

  • Schottel JL (1978) The mercury and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J Biol Chem 253:4341–4349

    CAS  PubMed  Google Scholar 

  • Schroeder WH, Munthe J (1998) Atmospheric mercury—an overview. Atmospheric Environ 32:809–822

    Article  CAS  Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Ann Rev Environ Res 34:43

    Article  Google Scholar 

  • Shehu J, Imeri A, Kupe L, Dodona E, Shehu A, Mullaj A (2014) Hyperaccumulators of mercury in the industrial area of a PVC factory in Vlora (Albania). Arch Biol Sci Belgrade 66:1457–1464

    Article  Google Scholar 

  • Sotero-Martins A, Jesus MS, Lacerda M, Moreira JC, Filgueiras AL, Barrocas PR (2008) A conservative region of the mercuric reductase gene (merA) as a molecular marker of bacterial mercury resistance. Braz J Microbiol 39:307–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Storey EP, Boghozian R, Little JL, Lowman DW, Chakraborty R (2006) Characterization of ‘Schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum IARI 917. Biometals 19:637–649

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Han F, Shiyab S, Monts DL (2007) Phytoextraction and accumulation of mercury in selected plant species grown in soil contaminated with different mercury compounds. In: WM’07 Conference February 25–March 1, 2007, Tucson, Arizon, USA

    Google Scholar 

  • Sunil KCR, Swati K, Bhavya G, Nandhini M, Veedashree M, Prakash HS, Kini KR, Geetha N (2015) Streptomyces flavomacrosporus, a multi-metal tolerant potential bioremediation candidate isolated from paddy field irrigated with industrial effluents. Int J Life Sci 3:9–15

    Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161

    Article  Google Scholar 

  • Tariq A, Latif Z (2014) Bioremediation of mercury compounds by using immobilized nitrogen-fixing bacteria. Inter J Agric Biol 16:1129–1134

    CAS  Google Scholar 

  • Tariq S, Amin A, Latif Z (2015) PCR based DNA fingerprinting of mercury resistant and nitrogen fixing Pseudomonas spp. Pure Appl Biol 4:129–136

    Article  CAS  Google Scholar 

  • Teng Y, Wang X, Li L, Li Z, Luo Y (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • Weiss AA, Murphy SD, Silver S (1977) Mercury and organomercurial resistances determined by plasmids in Staphylococcus aureus. J Bacteriol 132:197–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wood JL, Tang C, Franks AE (2016) Microbial associated plant growth and heavy metal accumulation to improve phytoextraction of contaminated soils. Soil Biol Biochem 103:131–137

    Article  CAS  Google Scholar 

  • Yong X, Chen Y, Liu W, Xu L, Zhou J, Wang S, Chen P, Ouyang P, Zheng T (2014) Enhanced cadmium resistance and accumulation in Pseudomonas putida KT2440 expressing the phytochelatin synthase gene of Schizosaccharomyces pombe. Lett Appl Microbiol 58:255–261

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    Article  CAS  PubMed  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239:302–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author I. Gontia-Mishra acknowledges the funding provided by Science and Engineering Research Board, New Delhi, India, grant number PDF/2017/001001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iti Gontia-Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sapre, S., Deshmukh, R., Gontia-Mishra, I., Tiwari, S. (2019). Problem of Mercury Toxicity in Crop Plants: Can Plant Growth Promoting Microbes (PGPM) Be an Effective Solution?. In: Maheshwari, D., Dheeman, S. (eds) Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_10

Download citation

Publish with us

Policies and ethics