Skip to main content
Log in

Amelioration of phytotoxic effects of Cd on mung bean seedlings by gluconic acid secreting rhizobacterium Enterobacter asburiae PSI3 and implication of role of organic acid

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mung bean seedlings inoculated with Enterobacter asburiae PSI3, a gluconic acid-producing rhizosphere isolate, enhanced plant growth in the presence of phytotoxic levels of Cd2+ in gnotobiotic pot experiments as compared to the uninoculated Cd-treated plants. Addition of organic acids to Cd-stressed seedlings promoted root elongation. Hematoxylin competition assays showed that organic acids could displace Cd2+ from the Cd2+: hematoxylin complex in the same order of effectiveness as was found for restoration of root net elongation viz. oxalate > malate > succinate while gluconate was effective at higher concentrations. Root associated Cd2+, assessed by hematoxylin staining of roots was found to be reduced when roots were treated with organic acid. Cd stress increased antioxidant enzymes such as peroxidase and superoxide dismutase in mung bean roots while organic acid treatment suppressed the up-regulation of these enzymes by Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arduini I, Godbold DL, Onnis A (1994) Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiol Plant 92:675–680. doi:10.1111/j.1399-3054.1994.tb03039.x

    Article  CAS  Google Scholar 

  • Barea J-M, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778. doi:10.1093/jxb/eri197

    Article  CAS  Google Scholar 

  • Baszynski T, Wajda L, Krol M, Wolinska D, Krupa Z, Tukendorf A (1980) Photosynthetic activity of Cd-treated tomato plants. Physiol Plant 48:365–370. doi:10.1111/j.1399-3054.1980.tb03269.x

    Article  CAS  Google Scholar 

  • Belimov AA, Dietz K-J (2000) Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol Res 155:113–121

    CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34. doi:10.1590/S1677-04202005000100003

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decrease nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  Google Scholar 

  • Burd GI, Dixon GD, Glick BR (2000) Plant growth promoting bacterium that decreases heavy metal toxicity in plants. Can J Microbiol 46:237–245. doi:10.1139/cjm-46-3-237

    Article  CAS  Google Scholar 

  • Chiang P-N, Wang MK, Chiu CY, Chou S-Y (2006) Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environ Toxicol 21:479–488. doi:10.1002/tox.20210

    Article  CAS  Google Scholar 

  • Cieslinski G, Van Rees KCJ, Szmigielska AM, Krishnamurti GSR, Huang PM (1998) Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203:109–117. doi:10.1023/A:1004325817420

    Article  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminium tolerance in wheat. Plant Physiol 103:695–702

    CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreon V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84. doi:10.1016/j.soilbio.2007.06.024

    Article  CAS  Google Scholar 

  • Diels L, van der Lelie N, Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1:75–82. doi:10.1023/A:1015188708612

    Article  CAS  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279. doi:10.1016/S0958-1669(00)00095-1

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393. doi:10.1016/S0734-9750(03)00055-7

    Article  CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospects. Am J Altern Agric 1:51–57

    Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12:185–193

    Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana G, Poole PS, Collins MD, Hutson RA et al (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilisation by Enterobacter asburiae PSI3. FEMS Microbiol Lett 171:223–229. doi:10.1111/j.1574-6968.1999.tb13436.x

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. doi:10.1093/jexbot/53.366.1

    Article  CAS  Google Scholar 

  • Han F, Shan X, Zhang S, Wen B, Owens G (2006) Enhanced cadmium accumulation in maize roots—the impact of organic acids. Plant Soil 289:355–368. doi:10.1007/s11104-006-9145-9

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2003) Changes in protein and amino acid contents in two cultivars of rice seedlings with different apparent tolerance to cadmium. Plant Growth Regul 40:147–155. doi:10.1023/A:1024248021314

    Article  CAS  Google Scholar 

  • Inoune M, Ninomiya S, Tohoyama H, Joho M, Murayama T (1994) Different characteristics of roots in the cadmium tolerance and Cd-binding complex formation between mono- and dicotyledenous plants. J Plant Res 107:201–207. doi:10.1007/BF02344245

    Article  Google Scholar 

  • Johnson LB, Cunningham BA (1972) Peroxidase activity in healthy and leaf rust infected wheat leaves. Phytochemistry 11:547–551. doi:10.1016/0031-9422(72)80011-6

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, van Hees PAW (2003) Organic acid behavior in soils—misconceptions and knowledge gaps. Plant Soil 248:31–41. doi:10.1023/A:1022304332313

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 26:1–15. doi:10.1051/agro:2005055

    Article  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195. doi:10.1007/s11104-004-1158-7

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25. doi:10.1023/B:ANTO.0000024903.10757.6e

    Article  CAS  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of aluminium in higher plant. Plant Cell Physiol 41:383–390

    CAS  Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. doi:10.1111/j.1432-1033.1974.tb03714.x

    Article  CAS  Google Scholar 

  • Meharg AA (2005) Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. Plant Soil 274:163–174. doi:10.1007/s11104-004-0262-z

    Article  CAS  Google Scholar 

  • Metwally A, Safronova V, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    CAS  Google Scholar 

  • Nigam R, Srivastva S, Prakash S, Srivastava MM (2000) Effect of organic acids on availability of cadmium in wheat. Chem Spec Bioavail 12:125–132. doi:10.3184/095422900782775481

    Article  CAS  Google Scholar 

  • Parker DR, Pedler JF (1998) Probing the malate hypothesis of differential aluminium tolerance in wheat by using other rhizotoxic ions as proxies for Al. Planta 205:389–396. doi:10.1007/s004250050335

    Article  CAS  Google Scholar 

  • Pineros MA, Magalhaes JV, Alves VMC, Kochian LV (2002) The physiology and biophysics of an aluminium tolerance mechanism based on root citrate exudation in maize. Plant Physiol 129:1194–1206. doi:10.1104/pp.002295

    Article  CAS  Google Scholar 

  • Pishchik VN, Vorobyev NI, Chernyaeva II, Timofeeva SV, Kozhemyakov AP, Alexeev YV et al (2002) Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243:173–186. doi:10.1023/A:1019941525758

    Article  CAS  Google Scholar 

  • Rani A, Shouche YS, Goel R (2008) Declination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 Strain. Curr Microbiol 57:78–82. doi:10.1007/s00284-008-9156-2

    Article  CAS  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069. doi:10.1139/w05-094

    Article  CAS  Google Scholar 

  • Rodrıguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. doi:10.1016/S0734-9750(99)00014-2

    Article  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–556. doi:10.1146/annurev.arplant.52.1.527

    Article  CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272. doi:10.1007/s00374-005-0024-y

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648. doi:10.1007/s10295-007-0240-6

    Article  CAS  Google Scholar 

  • Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Douglas L et al (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898. doi:10.1104/pp.127.3.887

    Article  CAS  Google Scholar 

  • Sharma V, Kumar V, Archana G, Naresh Kumar G (2005) Substrate specificity of glucose dehydrogenase (GDH) of Enterobacter asburiae PSI3 and rock phosphate solubilization with GDH substrates as C sources. Can J Microbiol 51:477–482. doi:10.1139/w05-032

    Article  CAS  Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiaraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    CAS  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60. doi:10.1007/s00284-007-9038-z

    Article  CAS  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–89. doi:10.1111/j.1399-3054.1992.tb05267.x

    Article  CAS  Google Scholar 

  • Tripura C, Reddy PS, Reddy MK, Sashidhar B, Podile AR (2007) Glucose dehydrogenase of a rhizobacterial strain of Enterobacter asburiae involved in mineral phosphate solubilization shares properties and sequence homology with other members of Enterobacteriacea. Indian J Microbiol 47:126–131. doi:10.1007/s12088-007-0025-7

    Article  CAS  Google Scholar 

  • Vassilev A, Vangronsveld J, Yordanov I (2002) Cadmium phytoextraction: present state biological background and research needs. Bulg J Plant Physiol 28:68–95

    Google Scholar 

Download references

Acknowledgments

S. Shukla is grateful to Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Archana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavita, B., Shukla, S., Naresh Kumar, G. et al. Amelioration of phytotoxic effects of Cd on mung bean seedlings by gluconic acid secreting rhizobacterium Enterobacter asburiae PSI3 and implication of role of organic acid. World J Microbiol Biotechnol 24, 2965–2972 (2008). https://doi.org/10.1007/s11274-008-9838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9838-8

Keywords

Navigation