Skip to main content

Common Bean (Phaseolus vulgaris L.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Legumes

Abstract

The common bean (Phaseolus vulgaris L.) is a grain legume species, mostly cultivated in many developing countries of Africa, America and Asia. It is considered a key crop for improving food security of people vulnerable to malnutrition. From the 1930s, common bean genetic improvement has historically been conducted by international programs in coordination with government institutions and following traditional methods. Those efforts have created successful varieties in recent decades. But, current climate change effects and the reduced adoption of adequate technologies for cultivation, have threatened common bean productivity. Probably, challenges for the next decades cannot meet using only traditional breeding. Thus, new techniques and approaches for conducting breeding should be soon adopted to obtain new varieties with broad resistance to varied biotic and abiotic stresses. When planning new breeding programs, it is important to consider the current agro-biotechnology advances in molecular markers, functional genomics, mutagenesis, tissue culture and even genetic engineering, which could improve breeding efficiency. Additionally, the conservation, utilization of genetic resources and the promotion of participatory breeding will be crucial to strengthen the least productive common bean systems. It will be important to provide varieties that respond well to agro-ecological management under an integral ecology approach. Finally, it is evident that there is still an opportunity to improve productivity by improving access and adoption of more resilient technologies. In this particular case, community seed banks can play an important role in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acquaah G (2007) Principles of plant genetics and breeding, 1st edn. Wiley, London

    Google Scholar 

  • Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. John Wiley, London

    Book  Google Scholar 

  • Allen DJ, Dessert M, Trutmann T, Voss J (1989) Common beans in Africa and their constraints. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics, 2nd edn. CIAT, Cali, pp 9–31

    Google Scholar 

  • Almekinders CJM (2011) The joint development of JM-12.7: a technographic description of the making of a bean variety. NJAS-Wageningen J Life Sci 57:207–216

    Article  Google Scholar 

  • Amugune NO, Anyango B, Mukiama TK (2011) Agrobacterium-mediated transformation of common bean. Afr Crop Sci J 19:137–147

    Google Scholar 

  • Anderson JW, Smith BM, Washnock CS (1999) Cardiovascular and renal benefits of dry bean and soybean intake. Am J Clin Nutr 70(Suppl):464S–474S

    Article  CAS  PubMed  Google Scholar 

  • Andrade-Aguilar JA, Jackson MT (1988) Attempts at interspecific hybridization between Phaseolus vulgaris L. and P. acutifolius A. Gray using embryo rescue. Plant Breed 101:173–180

    Article  Google Scholar 

  • Angioi SA, Rau D, Attene G et al (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121:829–843

    Article  CAS  PubMed  Google Scholar 

  • Aparicio-Fabre R, Guillén G, Loredo M et al (2013) Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency. BMC Plant Biol 13:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aragão FJL, Nogueira EOPL, Tinoco MLP, Faria JC (2013) Molecular characterization of the first commercial transgenic common bean immune to the bean golden mosaic virus. J Biotech 166:42–50

    Article  CAS  Google Scholar 

  • Araya R, Hernández JC (2007) Variedades de frijol de grano rojo, obtenidas por fitomejoramiento participativo en Costa Rica 2000–2007. http://www.mag.go.cr/bibliotecavirtual/F01-9381.pdf. Accessed 7 July 2018

  • Argaw A, Muleta D (2017) Effect of genotypes-Rhizobium-environment interaction on nodulation and productivity of common bean (Phaseolus vulgaris L.) in eastern Ethiopia. Environ Syst Res. https://doi.org/10.1186/s40068-017-0091-8

  • Arthikala MK, Nanjareddy K, Lara M (2018) In BPS1 downregulated roots, the BYPASS1 signal disrupts the induction of cortical cell divisions in bean-Rhizobium symbiosis. Genes 9. https://doi.org/10.3390/genes9010011

  • Aruna C, Audilakshmi S (2008) A strategy to identify potential germplasm for improving yield attributes using diversity analysis in sorghum. Plant Genet Resour 6:187–194

    Article  Google Scholar 

  • Asfaw A, Blair MW, Almekinders CJM (2009) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from East African highlands. Theor Appl Genet 120:1–12

    Article  PubMed  Google Scholar 

  • Asfaw A, Almekinders CJM, Blair MW, Struik PC (2012) Participatory approach in common bean (Phaseolus vulgaris L.) breeding for drought tolerance for southern Ethiopia. Plant Breed 131:125–134

    Article  Google Scholar 

  • Asfaw A, Almekinders CJM, Struik PC, Blair MW (2013) Farmers’ common bean variety and seed management in the face of drought and climate instability in southern Ethiopia. Sci Res Essays 8:1022–1037

    Google Scholar 

  • Ávila T, Blair MW, Reyes X, Bertin P (2012) Genetic diversity of bean (Phaseolus) landraces and wild relatives from the primary centre of origin of the Southern Andes. Plant Genet Resour 10:83–92

    Article  CAS  Google Scholar 

  • Balestre M, Torga PP, Von Pinho RG, Dos Santos JB (2013) Applications of multi-trait selection in common bean using real and simulated experiments. Euphytica 189:225–238

    Article  Google Scholar 

  • Barabaschi D, Tondelli A, Desiderio F et al (2016) Next generation breeding. Plant Sci 242:3–13

    Article  CAS  PubMed  Google Scholar 

  • Basset MJ (1991) A revised linkage map of common bean. HortSci 26:834–836

    Article  Google Scholar 

  • Bassi D, Briñez B, Rosa JS et al (2017) Linkage and mapping of quantitative trait loci associated with angular leaf spot and powdery mildew resistance in common beans. Genet Mol Biol 40:109–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaver J, Osorno JM (2009) Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica 168:145–175

    Article  CAS  Google Scholar 

  • Beebe S (2012) Common bean breeding in the tropics. In: Janick J (ed) Plant breeding reviews, vol 36, 1st edn. Wiley-Blackwell, Hoboken, pp 357–426

    Chapter  Google Scholar 

  • Beebe S, Ramírez J, Jarvis A et al (2011) Genetic improvement of common beans and the challenges of climate change. In: Yadav SS, Redden RJ, Hatfield JL et al (eds) Crop adaptation to climate change. Wiley, Sussex, pp 356–369

    Chapter  Google Scholar 

  • Bennett AE, Daniell TJ, White PJ (2013) Benefits of breeding crops for yield response to soil organisms. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1. 1st Wiley, Hoboken, pp 17–27

    Google Scholar 

  • Bitocchi E, Nanni L, Bellucci E et al (2012) Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. PNAS 109:E788–E796

    Article  PubMed  Google Scholar 

  • Bitocchi E, Bellucci E, Giardini A et al (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313

    Article  CAS  PubMed  Google Scholar 

  • Blair MW (2013) Breeding approaches to increasing nutrient-use efficiency: examples from common beans. In: Rengel Z (ed) Improving water and nutrient-use efficiency in food production systems, 1st edn. John Wiley, Oxford, pp 161–175

    Chapter  Google Scholar 

  • Blair MW, Giraldo MC, Buendía HF et al (2006) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Fregene MA, Beebe SE, Ceballos H (2007) Marker-assisted selection in common beans and cassava. In: Guimarães E, Ruane J, Scherf B et al (eds) Marker-assisted selection – current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome, pp 81–164

    Google Scholar 

  • Blair MW, Díaz LM, Buendia HF, Duque MC (2009) Genetic diversity, seed size associations and population structure of a core collection of common beans (Phaseolus vulgaris L.). Theor Appl Genet 119:955–972

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Hurtado N, Chavarro CM et al (2011) Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series. BMC Plant Biol 11:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair MW, Soler A, Cortes AJ (2012) Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS ONE. https://doi.org/10.1371/journal.pone.0049488

  • Bonfim K, Faria JC, Nogueira EOPL et al (2007) RNAi mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interat 20:717–726

    Article  CAS  Google Scholar 

  • Bonifácio EM, Fonseca A, Almeida C et al (2012) Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.). Theor Appl Genet 124:1513–1520

    Article  PubMed  Google Scholar 

  • Briñez B, Perseguini JMKC, Rosa JS et al (2017) Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers. Genet Mol Biol 40:813–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukasov SM (1931) The cultivated plants of Mexico, Guatemala and Colombia. Bull Appl Bot Genet Plant Breed 47:1–553

    Google Scholar 

  • Burle ML, Fonseca JR, Kami JA, Gepts P (2010) Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theor Appl Genet 121:801–813

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabral PDS, Soares TCB, Lima ABP et al (2011) Genetic diversity in local and commercial dry bean (Phaseolus vulgaris) accessions based on microsatellite markers. Genet Mol Res 10:140–149

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Ponce JL, López L, León-Ramírez CG et al (2015) Stress induced acquisition of somatic embryogenesis in common bean Phaseolus vulgaris L. Protoplasma 252:559–570. https://doi.org/10.1007/s00709-014-0702-4

    Article  PubMed  Google Scholar 

  • CENTA (2018) Centro Nacional de Tecnología Agropecuaria y Forestal “Enrique Álvarez Córdova”, guías técnicas y documentos del cultivo del frijol. http://www.centa.gob.sv/2015/frijol/. Accessed 8 July 2018

  • Chacon MI, Pickersgill SB, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444

    Article  CAS  Google Scholar 

  • Chen CL, Wang HH, Jeng TL et al (2011) Genetic diversity in NaN3-induced common bean mutants and commercial varieties detected by AFLP. Crop Breed Appl Biotech 11:365–369

    Article  CAS  Google Scholar 

  • Chen M, Wu J, Wang L et al (2017) Mapping and genetic structure analysis of the anthracnose resistance locus Co-1HY in the common bean (Phaseolus vulgaris L.). PLoS One 12:e0169954. https://doi.org/10.1371/journal.pone.0169954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiba S, Kondo H, Tani A et al (2011) Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog 7:e1002146. https://doi.org/10.1371/journal.ppat.1002146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen JH, Kumar KK, Aldrian E et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1217–1308

    Google Scholar 

  • CIAT (2018) Bean diversity. http://ciat.cgiar.org/what-we-do/crop-conservation-and-use/bean-diversity/. Accessed 27 March 2018

  • Collado R, Bermúdez-Caraballoso I, García RL et al (2016) Epicotyl sections as targets for plant regeneration and transient transformation of common bean using Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 52:500–511

    Article  CAS  Google Scholar 

  • Coomes OT, McGuire SJ, Garine E et al (2015) Farmer seed networks make a limited contribution to agriculture? Four common misconceptions. Food Policy 56:41–50

    Article  Google Scholar 

  • Cordoba JM, Chavarro C, Schlueter JA et al (2010) Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics 11:436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortes AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:827–845

    Article  PubMed  Google Scholar 

  • Cruz de Carvalho MH, Van Le B, Zuily-Fodil Y et al (2000) Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Sci 159:223–232

    Article  CAS  PubMed  Google Scholar 

  • Dall’Agnol RF, Ribeiro RA, Ormeño-Orrillo E et al (2013) Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63:4167–4173

    Article  PubMed  Google Scholar 

  • Dawson JC, Goldringer I (2012) Breeding for genetically diverse populations: variety mixtures and evolutionary populations. In: Lammerts van Bueren ET, Myers JR (eds) Organic crop breeding. Wiley, Oxford, pp 77–98

    Google Scholar 

  • Delgado-Salinas A, Bibler R, Lavin M (2006) Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot 31:779–791

    Article  Google Scholar 

  • Delgado-Sánchez P, Saucedo-Ruiz M, Guzman-Maldonado HS, Mora-Aviles MA (2006) An organogenic plant regeneration system for common bean (Phaseolus vulgaris L.). Plant Sci 170:822–827

    Article  CAS  Google Scholar 

  • Díaz AM, Caldas GV, Blair MW (2010a) Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res Int 43:595–601

    Article  CAS  Google Scholar 

  • Díaz LM, Buendía HF, Duque MC, Blair MW (2010b) Genetic diversity of Colombian landraces of common bean as detected through the use of silver-stained and fluorescently labelled microsatellites. Plant Genet Resour 9:86–96

    Article  CAS  Google Scholar 

  • DICTA (2018) Dirección de Ciencia y Tecnología Agropecuaria, Publicaciones del Editorial DICTA. Granos básicos, Frijol. http://www.dicta.hn/frijol.html. Accessed 13 July 2018

    Google Scholar 

  • Dillen W, Engler G, Van Montagu M, Angenon G (1995) Electroporation-mediated DNA delivery to seedling tissues of Phaseolus vulgaris L. (common bean). Plant Cell Rep 15:119–124

    Article  CAS  PubMed  Google Scholar 

  • Dressler RL (1953) The pre-Columbian cultivated plants of Mexico. Bot Mus Leaf Harv Univ 16:115–172

    Google Scholar 

  • Dusabumuremyi P, Niyibigira C, Mashingaidze AB (2014) Narrow row planting increases yield and suppresses weeds in common bean (Phaseolus vulgaris L.) in a semi-arid agro-ecology of Nyagatare, Rwanda. Crop Prot 64:13–18

    Article  Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Balaji J et al (2006) Using genomics to exploit grain legume biodiversity in crop improvement. In: Janick J (ed) Plant breeding reviews, vol 26. Wiley, Hoboken, pp 171–357

    Google Scholar 

  • Embrapa (2013) Catálogo de cultivares de feijão comun. https://www.cnpaf.embrapa.br/transferencia/tecnologiaseprodutos/cultivares/. Accessed 18 April 2018

  • Ender M, Terpstra K, Kelly JD (2008) Marker-assisted selection for white mold resistance in common bean. Mol Breed 21:149–157

    Article  CAS  Google Scholar 

  • FAO (2014) Community seed banks, junior farmer field and life school – facilitator’s guide. FAO, Rome

    Google Scholar 

  • FAOSTAT (2018) Food and agriculture data, crops. http://www.fao.org/faostat/en/#data/QC. Accessed 2 January 2018

  • Faria JC, Carneiro GES, Aragão FJL (2010) Gene flow from transgenic common beans expressing the bar gene. GM Crops 1:94–98

    Article  PubMed  Google Scholar 

  • Faria LC, Santos-Melo PG, Santos-Pereira H et al (2013) Genetic progress during 22 years of improvement of carioca-type common bean in Brazil. Field Crop Res 142:68–74

    Article  Google Scholar 

  • Ferreira LG, Buso GSC, Brondani RPV et al (2010) Genetic map of the common bean using a breeding population derived from the Mesoamerican gene pool. Crop Breed Appl Biotech 10:1–8

    Article  CAS  Google Scholar 

  • Fisseha Z, Tesfaye K, Dagne K et al (2016) Genetic diversity and population structure of common bean (Phaseolus vulgaris L) germplasm of Ethiopia as revealed by microsatellite markers. Afr J Biotech 15:2824–2847

    Article  Google Scholar 

  • Fonseca A, Ferreira J, dos Santos TRB et al (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosom Res 18:487–502

    Article  CAS  Google Scholar 

  • Formey D, Martín-Rodríguez JA, Leija A et al (2016) Regulation of small RNAs and corresponding targets in nod factor-induced Phaseolus vulgaris root hair cells. Int J Mol Sci 17. https://doi.org/10.3390/ijms17060887

  • Galeano CH, Fernandez AC, Franco-Herrera N et al (2011) Saturation of an intra-gene pool linkage map: towards a unified consensus linkage map for fine mapping and synteny analysis in common bean. PLoS One 6:e28135. https://doi.org/10.1371/journal.pone.0028135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García LR, Bermúdez-Caraballoso I, Veitía N et al (2012) Regeneración de plantas de cinco variedades de Phaseolus vulgaris L. vía organogénesis directa. Biotec Veg 12:49–52

    Google Scholar 

  • Geerts P, Toussaint A, Mergeai G, Baudoin JP (2002) Study of the early abortion in reciprocal crosses between Phaseolus vulgaris L. and Phaseolus polyanthus Greenm. Biotech Agron Soc Environ 6:109–119

    Google Scholar 

  • Geerts P, Druart P, Ochatt S, Baudoin JP (2008) Protoplast fusion technology for somatic hybridisation in Phaseolus. Biotech Agron Soc Environ 12:41–46

    Google Scholar 

  • Gepts P, Debouck D (1991) Origin, domestication and evolution of the common bean (Phaseolus vulgaris L.). In: van Schoohoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, CIAT, Cali, pp 7–43

    Google Scholar 

  • Goettsch LH (2016) Improved production systems for common bean in south-central Uganda. Iowa State University, Ames. MSc thesis

    Google Scholar 

  • Gómez OJ, Blair MW, Frankow-Lindberg BE, Gullberg U (2004) Molecular and phenotypic diversity of common bean landraces from Nicaragua. Crop Sci 44:1412–1418

    Article  Google Scholar 

  • Gonçalves-Vidigal MC, Mora F, Bignotto TS et al (2008) Heritability of quantitative traits in segregating common bean families using a Bayesian approach. Euphytica 164:551–560

    Article  Google Scholar 

  • Gonzalez AM, Yuste-Lisbona FJ, Fernández-Lozano A et al (2017) Genetic mapping and QTL analysis in Common bean. In: Santalla M, Marsolais F (eds) Pérez de la Vega M. The common bean genome. Compendium of plant genomes. Springer International, Kalyani, pp 69–107

    Google Scholar 

  • Goretti D, Bitocchi E, Bellucci E et al (2013) Development of single nucleotide polymorphisms in Phaseolus vulgaris and related Phaseolus spp. Mol Breed. https://doi.org/10.1007/s11032–013–9970–5

  • Gross Y, Kigel J (1994) Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Res 36:201–212

    Article  Google Scholar 

  • Gujaria-Verma N, Ramsay L, Sharpe AG et al (2016) Gene-based SNP discovery in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris) for diversity analysis and comparative mapping. BMC Genomics 17:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Kumar J, Mirr LL, Kumar A (2010) Marker assisted-selection as a component of convectional plant breeding. In: Janick J (ed) Plant breeding reviews, vol 33. Wiley, Hoboken, pp 145–217

    Chapter  Google Scholar 

  • Hanai LR, Santini L, Camargo LE et al (2010) Extension of the core map of common bean with EST-SSR, RGA, AFLP, and putative functional markers. Mol Breed 25:25–45

    Article  CAS  PubMed  Google Scholar 

  • Heinemann AB, Ramírez-Villegas J, Stone LF, Didonet AD (2017) Climate change determined drought stress profiles in rainfed common bean production systems in Brazil. Agric For Meteorol 246:64–77

    Article  Google Scholar 

  • Hillocks RJ, Madata CS, Chirwa R et al (2006) Phaseolus bean improvement in Tanzania, 1959–2005. Euphytica 150:215–231

    Article  Google Scholar 

  • Hnatuszko-Konka K, Kowalczyk T, Gerszberg A et al (2014) Phaseolus vulgaris – recalcitrant potential. Biotech Adv 32:1205–1215

    Article  Google Scholar 

  • IAEA (2018) Mutant variety database of the joint FAO/IAEA division of nuclear techniques in food and agriculture. https://mvd.iaea.org/#!Search?Criteria[0][val]=Phaseolusvulgaris. Accessed 22 February 2018

  • ICTA (2018) Instituto de Ciencia y Tecnología Agrícola, publicaciones de frijol. http://www.icta.gob.gt/publicacionesdefrijol. Accessed 7 July 2018

  • IICA (2009) Mapeo del Mercado de semillas de maíz y frijol de Centroamérica. Instituto Inter–Americano de Cooperacion para la Agricultura, Managua, Nicaragua

    Google Scholar 

  • Iñiguez LP, Ramírez M, Barbazuk WB, Hernández G (2017) Identification and analysis of alternative splicing events in Phaseolus vulgaris and Glycine max. BMC Genomics 18:650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • INTA (2013) Catálogo de semillas de granos básicos, variedades de arroz frijol maíz y sorgo libradas por el INTA. Instituto Nicaragüense de Tecnología Agropecuaria. Managua, Nicaragua

    Google Scholar 

  • INTA (2018) Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria de Costa Rica, Plataforma de Tecnología, Información y Comunicación Agropecuaria y Rural PLATICAR. http://www.platicar.go.cr/infoteca. Accessed 7 July 2018

  • ISAAA (2016) Global status of commercialized biotech/GM crops: 2016. https://www.isaaa.org/resources/publications/briefs/52/download/isaaa–brief–52–2016.pdf. Accessed 15 Mar 2018

  • ISAAA (2018) International Service for the Acquisition of Agri-Biotech Applications: GM Approval Database. http://www.isaaa.org/gmapprovaldatabase/default.asp. Accessed 15 Mar 2018

  • Ivančič A, Šiško M (2003) The variation of F2 progenies derived from interspecific crosses between Phaseolus vulgaris and Phaseolus coccineus. Agricultura 2:19–25

    Google Scholar 

  • Jha UC, Bohra A, Parida SK, Jha R (2017) Integrated “omics” approaches to sustain global productivity of major grain legumes under heat stress. Plant Breed 136:437–459

    Article  CAS  Google Scholar 

  • Jiménez OR (2014) Genetic improvement of the common bean (Phaseolus vulgaris L.) using local germplasm assisted by molecular markers. University of Helsinki, Helsinki, PhD thesis

    Google Scholar 

  • Jiménez OR, Korpelainen H (2012) Microsatellite markers reveal promising genetic diversity and seed trait associations in common bean landraces (Phaseolus vulgaris L.) from Nicaragua. Plant Genet Resour 10:108–118

    Article  Google Scholar 

  • Jiménez OR, Korpelainen H (2013) Preliminary evaluation of F1 generation derived from two common bean landraces (Phaseolus vulgaris) from Nicaragua. Plant Breed 132:205–210

    Article  Google Scholar 

  • Johnson NL, Pachico D, Voysest O (2003) The distribution of benefits from public international germplasm banks: the case of beans in Latin America. Agric Econ 29:277–286

    Article  Google Scholar 

  • Jones RAC (2016) Future scenarios for plant virus pathogens as climate change progresses. In: Kielian M, Maramorosch K, Mettenleiter TC (eds) Advances in virus research, vol 95. Elsevier, London, pp 88–140

    Google Scholar 

  • Jones RAC, Barbetti MJ (2012) Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Rev 7:1–31

    Article  Google Scholar 

  • Katungi E, Karanja D, Wozemba D et al (2011) A cost-benefit analysis of farmer based seed production for common bean in Kenya. Afr Crop Sci J 19:409–415

    Google Scholar 

  • Katungi E, Mutua M, Mutari B et al (2017) Improving bean production and consumption in Zimbabwe baseline report. CIAT, Pan-African Bean Research Alliance, Crop Institute of the Department of Agriculture Research Services of Zimbabwe and Agriculture Extension. https://cgspace.cgiar.org/bitstream/handle/10568/82724/Baseline_report_for_Zimbabwe_final.pdf?sequence=1 Accessed 8 July 2018

  • Kawaka F, Dida MM, Opala PA et al (2014) Symbiotic efficiency of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in soils of western Kenya. Int Sch Res Notices 2014:1–8

    Article  Google Scholar 

  • Kelly JD, Cichy KA (2013) Dry bean breeding and production technologies. In: Siddiq M, Uebersax MA (eds) Dry beans and pulses production, processing and nutrition. John Wiley, Oxford, pp 23–54

    Google Scholar 

  • Kelly J, Gepts P, Miklas P, Coyne D (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Article  Google Scholar 

  • Kreuze JF, Valkonen JPT (2017) Utilization of engineered resistance to viruses in crops of the developing world, with emphasis on sub-Saharan Africa. Curr Opin Virol 26:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    Article  CAS  PubMed  Google Scholar 

  • Kwapata K, Sabzikar R, Sticklen MB, Kelly JD (2010) In vitro regeneration and morphogenesis studies in common bean. Plant Cell Tissue Organ Cult 100:97–105

    Article  CAS  Google Scholar 

  • Kwapata K, Nguyen T, Sticklen M (2012) Genetic transformation of common bean (Phaseolus vulgaris L.) with the gus color marker, the bar herbicide resistance, and the barley (Hordeum vulgare) HVA1 drought tolerance genes. Int J Agron 2012:1–8. https://doi.org/10.1155/2012/198960

    Article  Google Scholar 

  • Kyndt T, Quispe D, Zhai H et al (2015) The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. PNAS 112:5844–5849

    Article  CAS  PubMed  Google Scholar 

  • Lareo LR, Gonzalez F (1988) Acceptability and nutritional quality of the common beans (Phaseolus vulgaris L.) a bibliography. CIAT, Cali

    Google Scholar 

  • Luna DA, Gonzalez de Mejía D, Dia VP, Loarca-Piña G (2014) Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chem 157:347–355

    Article  CAS  Google Scholar 

  • Macedo R, Sales LP, Yoshida F et al (2017) Potential worldwide distribution of Fusarium dry root rot in common beans based on the optimal environment for disease occurrence. PLoS One 12:e0187770. https://doi.org/10.1371/journal.pone.0187770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahuku G, Montoya C, Henriquez MA et al (2004) Inheritance and characterization of angular leaf spot resistance gene present in common bean accession G 10474 and identification of an AFLF marker linked to the resistance gene. Crop Sci 44:1817–1824

    Article  CAS  Google Scholar 

  • Maougal RT, Brauman A, Plassard C et al (2014) Bacterial capacities to mineralize phytate increase in the rhizosphere of nodulated common bean (Phaseolus vulgaris) under P deficiency. Eur J Soil Biol 62:8–14

    Article  CAS  Google Scholar 

  • Marcenaro D, Valkonen JPT (2016) Seedborne pathogenic fungi in common bean (Phaseolus vulgaris cv. INTA Rojo) in Nicaragua. PLoS One. https://doi.org/10.1371/journal.pone.0168662

  • Martin K, Singh J, Hill JH et al (2016) Dynamic transcriptome profiling of bean common mosaic virus (BCMV) infection in common bean (Phaseolus vulgaris L.). BMC Genomics 17:613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Castillo B, Rodríguez de la OJL, Mascorro Gallardo JO, Iturriaga G (2015) In vitro plants of common bean (Phaseolus vulgaris L.) obtained by direct organogenesis. J Agric Sci 7:169–179

    Google Scholar 

  • Mbogo KP (2007) Breeding for bruchid resistance in common bean (Phaseolus vulgaris L.): interspecific introgression of lectin-like seed proteins from tepary bean (P. acutifolius A. Gray), genetic control and bruchid resistance characterization. Oregon State University, Corvallis. PhD thesis

    Google Scholar 

  • McClean PE, Lavin M, Gepts P, Jackson SA (2008) Phaseolus vulgaris: a diploid model for soybean. In: Stacey G (ed) Genetics and genomics of soybean. Springer Science+Business Media, New York, pp 55–76

    Chapter  Google Scholar 

  • McClean PE, Terpstra J, McConnell M et al (2012) Population structure and genetic differentiation among the USDA common bean (Phaseolus vulgaris L.) core collection. Genet Resour Crop Evol 59:499–515

    Article  Google Scholar 

  • Mejía-Jiménez A, Muñoz C, Jacobsen HJ et al (1994) Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theor Appl Genet 88:324–331

    Article  PubMed  Google Scholar 

  • Mendoza-Soto AB, Naya N, Leija A, Hernandez G (2015) Responses of symbiotic nitrogen fixing common bean to aluminum toxicity and delineation of nodule responsive microRNAs. Front Plant Sci 6:587

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercado-Ruano P, Delgado-Salinas A (1998) Cytogenetic studies in Phaseolus L. (Fabaceae). Genet Mol Biol 23:985–987

    Article  Google Scholar 

  • Miklas PN, Larsen RC, Riley R, Kelly JD (2000) Potential marker-assisted selection for bc–I2 resistance to bean common mosaic potyvirus in common bean. Euphytica 116:211–219

    Article  CAS  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  • Mondo VHV, Nascente AS, Neto MOC (2016) Common bean seed vigor affecting crop grain yield. J Seed Sci 38:365–370

    Article  Google Scholar 

  • Monyo Emmanuel S, Laxmipathi Gowda CL (eds) (2014) Grain legumes strategies and seed roadmaps for select countries in Sub-Saharan Africa and South Asia. Tropical legumes II project report. Patancheru 502 324, Andhra Pradesh, India. ICRISAT. http://oar.icrisat.org/8016/1/J401_2013.pdf Accessed 8 July 2018

  • Mora-Aviles A, Lemus-Flores B, Miranda-Lopez R et al (2007) Effects of common bean enrichment on nutritional quality of tortillas produced from nixtamalized regular and quality protein maize flours. J Sci Food Agric 87:880–886

    Article  CAS  Google Scholar 

  • More AD, Borkar AT (2016) Mutagenic effectiveness and efficiency of Gamma rays and EMS in Phaseolus vulgaris L. Int J Curr Microbiol App Sci 5:544–554

    Article  CAS  Google Scholar 

  • Moreira SO, Morais Silva MG, Rodrigues R et al (2010) Breeding methods and history of bean cultivars released in CBAB – crop breeding and applied biotechnology. Crop Breed Appl Biotech 10:345–350

    Article  Google Scholar 

  • Mukankusi C, Raatz B, Nkalubo S et al (2018) Genomics, genetics and breeding of common bean (Phaseolus vulgaris L) in Africa. A review of tropical legume project. Plant Breed. https://doi.org/10.1111/pbr.12573

  • Mukeshimana G, Pañeda A, Rodríguez-Suárez C et al (2005) Markers linked to the bc-3 gene conditioning resistance to bean common mosaic potyviruses in common bean. Euphytica 144:291–299

    Article  Google Scholar 

  • Mukeshimana G, Ma Y, Walworth AE et al (2013) Factors influencing regeneration and Agrobacterium tumefaciens-mediated transformation of common bean (Phaseolus vulgaris L.). Plant Biotech Rep 7:59–70

    Article  Google Scholar 

  • Müller BSF, Sakamoto T, Menezes IPP et al (2014) Analysis of BAC-end sequences in common bean (Phaseolus vulgaris L.) towards the development and characterization of long motifs SSRs. Plant Mol Biol 86:455–470

    Article  CAS  PubMed  Google Scholar 

  • Mulumba JW, Nankya R, Adokorach J et al (2012) A risk-minimizing argument for traditional crop varietal diversity use to reduce pest and disease damage in agricultural ecosystems of Uganda. Agric Ecosyst Environ 157:70–86

    Article  Google Scholar 

  • Muñoz G, Guiraldo G, De Soto JF (1993) Descriptores varietales: arroz, frijol, maíz y sorgo. CIAT, Cali

    Google Scholar 

  • Nanjareddy K, Blanco L, Arthikala MK et al (2016a) A Legume TOR protein kinase regulates Rhizobium symbiosis and is essential for infection and nodule development. Plant Phys 172:2002–2020

    Article  CAS  Google Scholar 

  • Nanjareddy K, Arthikala MK, Blanco L et al (2016b) Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis. BMC Biotechnol 16:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemli S, Kaygisiz Aşçioğul T, Ateş D et al (2017) Diversity and genetic analysis through DArTseq in common bean (Phaseolus vulgaris L.) germplasm from Turkey. Turk J Agric For 41:389–404

    Article  CAS  Google Scholar 

  • Nova-Franco B, Iñiguez LP, Valdés-López O et al (2015) The Micro-RNA172c-APETALA2-1 node as a key regulator of the common bean-Rhizobium etli nitrogen fixation symbiosis. Plant Physiol 168:273–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Boyle PD, Kelly JD, Kirk WW (2007) Use of marker-assisted selection to breed for resistance to common bacterial blight in common bean. J Amer Soc Hort Sci 132:381–386

    Article  Google Scholar 

  • O’Rourke JA, Iñiguez LP, Fu F et al (2014) An RNA-Seq based gene expression atlas of the common bean. BMC Genomics 15:866

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira EJ, Alzate-Marin AL, Borem A et al (2005) Molecular marker-assisted selection for development of common bean lines resistant to angular leaf spot. Plant Breed 124:572–575

    Article  Google Scholar 

  • Oliveira EJ, Fraife Filho GA, Freitas JPX et al (2012) Plant selection in F2 segregating populations of papaya from commercial hybrids. Crop Breed Appl Biotech 12:191–198

    Google Scholar 

  • Opole RA, Mathenge PW, Auma EO et al (2003) On-farm seed production practices of common bean (Phaseolus vulgaris L.). Afr Crop Sci Conf Proc 6:722–725

    Google Scholar 

  • Oseguera-Toledo ME, Gonzalez de Mejía E, Dia VP, Amaya-Llano SL (2011) Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-jB pathways. Food Chem 127:1175–1185

    Article  CAS  PubMed  Google Scholar 

  • Pasev G, Kostova D, Sofkova S (2014) identification of genes for resistance to bean common mosaic virus and bean common mosaic necrosis virus in snap bean (Phaseolus vulgaris L.) breeding lines using conventional and molecular methods. J Phytopathol 162:19–25

    Article  CAS  Google Scholar 

  • Pathania A, Sharma SK, Sharma PN (2014) Common bean. In: Singh M, Bisht IS, Dutta M (eds) Broadening the genetic base of grain legumes. Springer, New Delhi, pp 11–50

    Google Scholar 

  • Peng S, Huang J, Cassman KG et al (2010) The importance of maintenance breeding: a case study of the first miracle rice variety-IR8. Field Crops Res 119:342–347

    Article  Google Scholar 

  • Petry N, Boy E, Wirth JP, Hurrell RF (2015) Review: the potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7:1144–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228

    Article  Google Scholar 

  • Pinheiro PV, Quintela ED, Junqueira AMR et al (2014) Populational survey of arthropods on transgenic common bean expressing the rep gene from bean golden mosaic virus. GM Crops Food 5:139–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Porch TG, Jahn N (2001) Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ 24:723–731

    Article  Google Scholar 

  • Porch TG, Blair MW, Lariguet P et al (2009) Generation of a mutant population for TILLING common bean genotype BAT 93. J Amer Soc Hort Sci 134:348–355

    Article  Google Scholar 

  • Porch TG, Beaver JS, Debouck DG et al (2013) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3:433–461

    Article  Google Scholar 

  • Porter JR, Xie L, Challinor AJ et al (2014) Food security and food production systems. In: Field CB, Barros VR, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectorial aspects contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 485–533

    Google Scholar 

  • Quintero-Jiménez A, Espinosa E, Acosta-Gallegos JA et al (2010) An improved method for in vitro regeneration of common bean (Phaseolus vulgaris L.). Agrociencia 44:57–64

    Google Scholar 

  • Raggi L, Tiranti B, Negri V (2013) Italian common bean landraces: diversity and population structure. Genet Resour Crop Evol 60:1515–1530

    Article  Google Scholar 

  • Rainey KM, Griffiths PD (2005) Differential response of common bean genotypes to high temperature. J Am Soc Hortic Sci 130:18–23

    Article  Google Scholar 

  • Ramírez M, Flores-Pacheco G, Reyes JL et al (2013) Two common bean genotypes with contrasting response to phosphorus deficiency show variations in the microRNA 399-mediated PvPHO2 regulation within the PvPHR1 signaling pathway. Int J Mol Sci 14:8328–8344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Cabral NYZ, Kumar L, Taylor S (2016) Crop niche modeling projects major shifts in common bean growing areas. Agric For Meteorol 218–219:102–113

    Article  Google Scholar 

  • Rana JC, Sharma TR, Tyagi RK et al (2015) Characterisation of 4274 accessions of common bean (Phaseolus vulgaris L.) germplasm conserved in the Indian gene bank for phenological, morphological and agricultural traits. Euphytica 205:441–457

    Article  CAS  Google Scholar 

  • Rech EL, Vianna GR, Aragão FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Protoc Nat 3:410–418

    Article  CAS  Google Scholar 

  • Reddy PP (2013) Impact of climate change on insect pests, pathogens and nematodes. Pest Manag Hort Ecosyst 19:225–233

    Google Scholar 

  • Reyes BA (2012) The economic impact of improved bean varieties and determinants of market participation: evidence from Latin America and Angola. Michigan State University, Ann Arbor. PhD thesis

    Google Scholar 

  • Rocha GS, Pereira LPL, Carneiro PCS et al (2012) Common bean breeding for resistance to anthracnose and angular leaf spot assisted by SCAR molecular markers. Crop Breed Appl Biotech 12:34–42

    Article  Google Scholar 

  • Rodríguez JJ, Creamer B (2014) Major constraints and trends for common bean production and commercialization; establishing priorities for future research. Agron Colomb 32:423–431

    Article  Google Scholar 

  • Saltzman A, Birol E, Oparinde A et al (2017) Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Ann N Y Acad Sci 1390:104–114

    Article  PubMed  Google Scholar 

  • Samago TY, Anniye EW, Dakora FD (2017) Grain yield of common bean (Phaseolus vulgaris L.) varieties is markedly increased by rhizobial inoculation and phosphorus application in Ethiopia. Symbiosis. https://doi.org/10.1007/s13199–017–0529–9

  • Santalla M, De Ron AM, De La Fuente M (2010) Integration of genome and phenotypic scanning gives evidence of genetic structure in Mesoamerican common bean (Phaseolus vulgaris L.) landraces from the southwest of Europe. Theor Appl Genet 120:1635–1651

    Article  CAS  PubMed  Google Scholar 

  • Scheben A, Wolter F, Batley J et al (2017) Towards CRISPR/Cas crops – bringing together genomics and genome editing. New Phytol 216:682–698

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–716

    Article  CAS  PubMed  Google Scholar 

  • Schneider KA, Brothers ME, Kelly JD (1997) Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37:51–60

    Article  CAS  Google Scholar 

  • Seidel SJ, Rachmilevitch S, Schütze N, Lazarovitch N (2016) Modelling the impact of drought and heat stress on common bean with two different photosynthesis model approaches. Environ Model Softw 81:111–121

    Article  Google Scholar 

  • Sharma HC, Srivastava CP, Durairaj C, Gowda CLL (2010) Pest management in grain legumes and climate change. In: Yadav SS, Redden R (eds) Climate change and management of cool season grain legume crops. Springer, Dordrecht, pp 115–139

    Chapter  Google Scholar 

  • Sharma P, Díaz LM, Blair MW (2012) Genetic diversity of two Indian common bean germplasm collections based on morphological and microsatellite markers. Plant Genet Resour 11:1–10

    Google Scholar 

  • Singh SP (1989) Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 43:39–57

    Article  Google Scholar 

  • Singh SP (1992) Common bean improvement in the tropics. In: Janick J (ed) Plant breeding reviews, vol 10. Wiley, New York, pp 199–269

    Google Scholar 

  • Singh I (2016) Regeneration and transformation of common bean (Phaseolus vulgaris L.). University of Nebraska, Lincoln. MSc thesis

    Google Scholar 

  • Singh SP, Teran H, Lema M et al (2007) Seventy-five years of breeding dry bean of the western USA. Crop Sci 47:981–989

    Article  Google Scholar 

  • Snoeck C, Vanderleyden J, Beebe S (2003) Strategies for genetic improvement of common bean and rhizobia towards efficient interactions. In: Janick J (ed) Plant breeding reviews, vol 23. Wiley, Hoboken, pp 21–72

    Google Scholar 

  • Song Q, Jia G, Hyten DL et al (2015) SNP assay development for linkage map construction, anchoring whole-genome sequence, and other genetic and genomic applications in common bean. G3. https://doi.org/10.1534/g3.115.020594

  • Souza TLPO, Ragagnin VA, Dessaune SN et al (2014) DNA marker-assisted selection to pyramid rust resistance genes in “carioca” seeded common bean lines. Euphytica 199:303–316

    Article  CAS  Google Scholar 

  • Ssekandi W, Mulumba JW, Colangelo P et al (2016) The use of common bean (Phaseolus vulgaris) traditional varieties and their mixtures with commercial varieties to manage bean fly (Ophiomyia spp.) infestations in Uganda. J Pest Sci 89:45–57

    Article  CAS  Google Scholar 

  • Svetleva D, Velcheva M, Bhowmik G (2003) Biotechnology as a useful tool in common bean (Phaseolus vulgaris L.) improvement. Euphytica 131:189–200

    Article  CAS  Google Scholar 

  • Taylor JD, Day JM, Dudley CL (1983) The effect of Rhizobium inoculation and nitrogen fertiliser on nitrogen fixation and seed yield of dry beans (Phaseolus vulgaris). Ann Appl Biol 103:419–429

    Article  Google Scholar 

  • Taylor RAJ, Herms DA, Cardina J, Moore RH (2018) Climate change and pest management: unanticipated consequences of trophic dislocation. Agronomy 8. https://doi.org/10.3390/agronomy8010007

  • Teran H, Lema M, Webster D, Singh SP (2009) 75 years of breeding pinto bean for resistance to diseases in the United States. Euphytica 167:341–351

    Article  Google Scholar 

  • Thomas M, Thépot S, Galic N et al (2015) Diversifying mechanisms in the on-farm evolution of crop mixtures. Mol Ecol 24:2937–2954

    Article  PubMed  Google Scholar 

  • Thung M (1991) Bean agronomy in monoculture. In: van Schoohoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, CIAT, Cali, pp 737–816

    Google Scholar 

  • Tiranti B, Negri V (2007) Selective microenvironmental effects play a role in shaping genetic diversity and structure in a Phaseolus vulgaris L. landrace: implications for on-farm conservation. Mol Ecol 16:4942–4955

    Article  CAS  PubMed  Google Scholar 

  • Tiwari M, Singh NK, Rathore M, Kumar N (2005) RAPD markers in the analysis of genetic diversity among common bean germplasm from Central Himalaya. Genet Resour Crop Evol 52:315–324

    Article  CAS  Google Scholar 

  • Ulukapi K, Ozmen SF (2017) Study of the effect of irradiation (60Co) on M1 plants of common bean (Phaseolus vulgaris L.) cultivars and determined of proper doses for mutation breeding. J Radiat Res Appl Sci. https://doi.org/10.1016/j.jrras.2017.12.004

  • Upadhyaya HD, Pundir RPS, Dwivedi SL et al (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  • UPOV (1991) Act of 1991: international convention for the protection of new varieties of plants.http://www.upov.int/export/sites/upov/upovlex/en/conventions/1991/pdf/act1991.pdf. Accessed 15 Jan 2018

  • UPOV (2017) Explanatory notes on essentially derived varieties under the 1991 act of the UPOV convention. http://www.upov.int/edocs/expndocs/en/upov_exn_edv.pdf. Accessed 15 January 2018

  • USDA (2018) United States Department of Agriculture, Natural Resources Conservation Services – Plant Data Base. https://plants.usda.gov/core/profile?symbol=PHVU. Accessed 2 January 2018

  • Valdisser PAMR, Pereira WJ, Almeida Filho JE et al (2017) In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics 18:423

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, May GD, Jackson SA (2010) Legumes genomics and breeding. In: Janick J (ed) Plant breeding reviews, vol 33. Wiley, Hoboken, pp 257–304

    Chapter  Google Scholar 

  • Veltcheva M, Svetleva D, Petkova SP, Perl A (2005) In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.) – problems and progress. Sci Hort 107:2–10

    Article  CAS  Google Scholar 

  • Vernooy R, Shrestha P, Sthapit B (eds) (2015) Community seed banks – origins, evolution and protects. Taylor and Francis, London

    Google Scholar 

  • Vernooy R, Sthapit B, Otieno G et al (2017) The roles of community seed banks in climate change adaption. Dev Pract 27:316–327

    Article  Google Scholar 

  • Vidak M, Carović-Stanko K, Barešić A et al (2017) Microsatellite markers in common bean (Phaseolus vulgaris L.). J Cent Eur Agric 18:902–917

    Article  Google Scholar 

  • Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voysest O (1983) Variedades de frijol en América Latina y su origen. CIAT, Cali

    Google Scholar 

  • Voysest O (2000) Mejoramiento genético del frijol (Phaseolus vulgaris L.): legado de variedades de América Latina 1930–1999. CIAT, Cali

    Google Scholar 

  • Waldman KB, Kerr JM, Isaacs KB (2014) Combining participatory crop trials and experimental auctions to estimate farmer preferences for improved common bean in Rwanda. Food Policy 46:183–192

    Article  Google Scholar 

  • Wang YK, Zhang X, Chen GL et al (2016) Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. J Funct Foods 24:359–372

    Article  CAS  Google Scholar 

  • Weisany W, Zehtab-Salmasi S, Raei Y et al (2016) Can arbuscular mycorrhizal fungi improve competitive ability of dill + common bean intercrops against weeds? Eur J Agron 75:60–71

    Article  Google Scholar 

  • White JW, Hoogenboom G, Jones JW, Boote KJ (1995) Evaluation of the dry bean model Beangro V1.01 for crop production research in a tropical environment. Exp Agric 31:241–254

    Article  Google Scholar 

  • Woolley J, Davis JHC (1991) The agronomy of intercropping with beans. In: van Schoohoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, CIAT, Cali, pp 707–730

    Google Scholar 

  • Woolley J, Lepiz R, Portes TA, Voss J (1991) Bean cropping systems in the tropics and subtropics and their determinants. In: van Schoohoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, CIAT, Cali, pp 679–704

    Google Scholar 

  • Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. CIAT, Cali, p 133

    Google Scholar 

  • Wu J, Wang L, Wang S (2016) Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean. BMC Plant Biol 16:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Wang G, Mao W et al (2014) Genetic diversity and population structure of common bean (Phaseolus vulgaris) landraces from China revealed by a new set of EST-SSR markers. Biochem Syst Ecol 57:250–256

    Article  CAS  Google Scholar 

  • Yu K, Park SJ, Poysa V (2000) Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics. Plant Breed 119:411–415

    Article  CAS  Google Scholar 

  • Yuste-Lisbona F, Santalla M, Capel C et al (2012) Marker-based linkage map of Andean common bean (Phaseolus vulgaris L.) and mapping of QTLs underlying popping ability traits. BMC Plant Biol 12:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Zargar SM, Mahajan R, Nazir M et al (2017) Common bean proteomics: present status and future strategies. J Proteome 169:239–248

    Article  CAS  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat markers. Theor Appl Genet 117:629–640

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswalt R. Jiménez .

Editor information

Editors and Affiliations

Appendices

Appendices

5.1.1 Appendix I: Research Institutes and Online Resources Available for Common Bean Breeding

Institute

Area of specialization and research activities

Contact information

Bioversity International

Plant genetic resources, conservation of common bean genetic resources in situ and ex situ; support to community seed banks for high-quality seed production; plant breeding using participatory approaches

Via dei Tre Denari, 472/a 00054 Maccarese (Fiumicino), Italy

https://www.bioversityinternational.org

Brazilian Agricultural Research Corporation (Embrapa)

Plant breeding, agro-biotechnology, crop management, plant breeding for high yield, resistance to biotic and abiotic stresses; tissue culture; genetic engineering

Rodovia GO-462, Km 12, Fazenda Capivara, Zona Rural Caixa Postal: 179 CEP: 75375-000 – Santo Antônio de Goiás GO, Brasil https://www.embrapa.br/en/arroz-e-feijao/

International Center for Tropical Agriculture (CIAT)

Plant breeding, crop management, seed production, phenotypic and molecular characterization of germplasm; plant breeding for high yield, resistance to biotic and abiotic stresses, high grain iron and zinc concentration; pre-breeding; conservation of genetic resources in situ and ex situ; support to community seed banks for high-quality seed production

Km 17 Recta Calí-Palmira CP 763537 Apartado Aéreo 6713, Calí, Colombia

Dr. Stephen Beebe (s.beebe@cgiar.org)

http://ciat.cgiar.org/what-we-do/breeding-better-crops/beans/

International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

Plant breeding, agro-biotechnology, crop management, genetic improvement using modern genomics, molecular biology and breeding approaches

Patancheru 502324 Telangana, India

Dr. Rajeev K. Vashney (r.k.varshney@cgiar.org)

http://www.icrisat.org/research-development/

Michigan State University

Plant breeding, crop management, breeding and genetics for drought tolerance and disease resistance; support to community seed banks for high-quality seed production

220 Trowbridge Rd., East Lansing, MI 48824, USA

Dr. James D. Kelly (kellyj@msu.edu), http://www.canr.msu.edu/psm/research

Misión Biológica de Galicia

Crop biodiversity, plant breeding, phenotypic and molecular characterization of germplasm; breeding for resistance to biotic and abiotic stresses

Pazo de Salcedo. Carballeira, 8. Salcedo. 36143 Pontevedra, España

Dr. Marta Santalla (msantalla@mbg.csic.es)

http://www.mbg.csic.es

National Institute of Forestry, Agriculture and Livestock Research (INIFAP México)

Plant breeding, plant genetic resources conservation, crop management, plant breeding for resistance to biotic and abiotic stresses; conservation of genetic resources in situ and ex situ; plant breeding using participatory approaches; support to community seed banks for high-quality seed production

Avenida Progreso No. 5, Col. Barrio de Santa Catarina, Delegación Coyoacan C.P. 0401, México, D.F.

www.inifap.gob.mx

United States Department of Agriculture / Agricultural Research Service

Plant breeding for high yields, resistance to biotic and abiotic stresses and to improve cooking time and nutritional value of harvested seeds

Jamie L. Whitten Building, Room 302A, 1400 Independence Ave., S.W. Washington DC 20250, USA https://www.ars.usda.gov/office-of-international-research-programs/ftf-grain-legumes/

University of California (Davis)

Crop biodiversity, plant breeding, study of evolutionary factors that affect crop biodiversity, plant factors such as gene flow and gene diversification, environmental correlations with crop biodiversity, and human effects on the maintenance and generation of diversity

1 Shields Ave, Davis, CA 95616, USA

Dr. Paul Gepts (plgepts@ucdavis.edu)

https://biology.ucdavis.edu/

https://biology.ucdavis.edu/people/paul-gepts

University of Puerto Rico

Plant breeding, seed production, plant breeding for high yield, resistance to biotic and abiotic stresses. High-quality seed production

Universidad de Puerto Rico, Mayagüez, Puerto Rico 00681-9000

Dr. James S. Beaver (james.beaver@upr.edu)

http://www.upr.edu/

Zamorano University

Plant breeding, crop management, plant breeding for high yield, high grain iron and zinc concentration and resistance to biotic and abiotic stresses. Research on Phaseolus-rhizobia interaction, high quality seed production

PO Box 93, Km 30 road from Tegucigalpa to Danlí, Yeguare Valley, Municipality of San Antonio de Oriente. Francisco Morazán, Honduras

Dr. Juan Carlos Rosas (jcrosas@zamorano.edu)

https://www.zamorano.edu/

  1. Note: These institutions have the most significant role at a global level. Nonetheless, there are a significant number of NIARs, universities and international institutes that also contribute to common bean breeding activities in the world

5.1.2 Appendix II: Genetic Resources of Common Bean

5.1.2.1 Most Popular Common Bean Varieties in African Countries, Their Characteristics and Site of Cultivation

Country

Variety name

Characteristics

Site of cultivation

Tanzania

Lyamungu 85

Tolerant to drought and diseases. Yield 2–2.5 mt/ha. Large red/brown Calima type seeds

Northern and Western zone

 

Lyamungu 90

Tolerant to drought and diseases. Yield 2–2.7 mt/ha. Large red mottle, Calima type seeds

Northern and Western zone

 

Uyole 90

Tolerant to ALS and R. Yield 2–2.5 mt/ha. Medium cream/brown stripe seeds

Southern highlands

 

SUA 90

Tolerant to ALS and R. Yield 2–2.5 mt/ha. Small beige seeds

Eastern zone

 

Selian 94

Tolerant to A and storage pests. Yield 2–2.5 mt/ha. Medium pink with red spots seeds

Northern and Western zone

 

Uyole 94

Tolerant to ALS, R. Yield 2–3 mt/ha. Large cream/dark red seeds

Southern highlands

 

Njano-Uyole

Tolerant to ALS and R. Yield 2–3 mt/ha. Medium yellow seeds

Southern highlands, Western and Northern zones

 

Uyole 96

Tolerant to R and ALS. Yield 2–2.5 mt/ha. Large dark red kidney seeds

Southern highlands

 

JESCA

Drought tolerant, early maturing variety. Yield 2–2.5 mt/ha. Large purple rounded seeds

Northern and Western zone

 

Selian 97

Tolerant to ALS and R. Yield 2–2.5 mt/ha. Large dark red kidney seeds

Northern and Western zone

 

Uyole 03

Tolerant to A, ALS and HB. Yield 2–2.5 mt/ha. Large sugar/red specked seeds

Southern highlands

 

Wanja

Tolerant to drought due to its early maturing nature. Yield 1.5–2 mt/ha. Large khaki seeds

Southern highlands

 

Uyole 04

Tolerant to A, ALS and HB. Yield 2.5–3 mt/ha. Medium cream seeds

Southern highlands

 

Calima-Uyole

Tolerant to A and ALS. Yield 2–3 mt/ha. Red mottled (Cranberry) medium seed size seeds

Southern highlands, Western and Northern zone

 

Cheupe

Tolerant to A, ALS and HB. Yield 4–6.5 mt/ha. Medium white seeds

Northern and Western zone

 

Selian 06

Tolerant to A, ALS and HB. Yield 4.6–7.5 mt/ha. Medium purple seeds

Northern and Western zone

Ethiopia

Lehode

Tolerant to foliar diseases

Northeastern

 

Loko

Tolerant/Resistant to ALS, HB, A, BCMNV

Western

 

Batu

Tolerant/Resistant to ALS and BCMNV

In areas with short season

 

Deme

Tolerant/Resistant to ALS and BCMNV

In all bean growing areas

 

Kufanzik

Tolerant/Resistant to ALS, HB, A, BCMNV

Eastern (Hararghe highlands)

 

Dursitu

Tolerant/Resistant to ALS and BCMNV

Eastern (Hararghe highlands)

 

Hawassa Dume

Tolerant/Resistant to ALS, HB, A, BCMV

Southern region (Wolaita, Sidama, Gamu Gofa)

 

CRANSCOPE

Tolerant/Resistant to ALS and BCMNV

Central Rift Valley

 

ACOS RED

Tolerant/Resistant to ALS and BCMNV

Central Rift Valley and southern region

 

GABISA

Resistant to CBB

Western bean growing region

 

Chercher

Tolerant/Resistant to ALS, HB, A, BCMV

Eastern (Hararghe highland)

 

Haramaya

Tolerant/Resistant to ALS and BCMNV

Eastern (Hararghe highland)

 

Chore

Tolerant/Resistant to ALS and BCMNV

Central Rift Valley and Eastern

 

Dinkinesh

Tolerant to CBB

All bean growing areas

 

Melkadima

Tolerant/Resistant to ALS and BCMV

Southern and Southwest

 

Batagonia

Tolerant/Resistant to ALS and BCMNV

Southern

 

Anger

Tolerant/Resistant to ALS and BCMNV

Western

 

Tibe

Tolerant/Resistant to ALS, HB, A, BCMNV

Western

 

Wedo

Tolerant/Resistant to ALS and BCMV

Northwest

 

Ibado

Tolerant/Resistant to ALS and BCMNV

Southern

 

Omo-95

Tolerant/Resistant to ALS

Southern

 

Nasir

Tolerant/Resistant to ALS and BCMV

Across all bean growing regions

 

Dimtu

Resistant to BGMV

Across all bean growing regions

 

Tabor

Tolerant/Resistant to ALS and BCMNV

Central Rift Valley and Southern

 

Zebra

Tolerant/Resistant to ALS, HB, A, BCMNV

Across all bean growing regions

 

Gobe Rasha-1

Tolerant/Resistant to ALS and BCMNV

Southern and Southwest

 

Red Woliata

Tolerant/Resistant to ALS and BCMNV

Southern

 

Awash Melka

Tolerant/Resistant to ALS, HB, A and BCMV

All bean growing regions

 

Roba

Tolerant/Resistant to ALS, HB, A and BCMNV

All bean growing regions

 

Awash 1

Tolerant/Resistant to ALS, HB, A and BCMNV

All bean growing regions

 

Mexican 142

Resistant to ALS

All bean growing regions

Kenya

New Rose Coco

Moderate resistance to R, CBB, ALS, A, BCMV and BCMNV. Yield 1.3–2.3 mt/ha. Large/ calima type seeds

Eastern, Western and Rift valley

 

Miezi mbili

Resistance to R, CBB, ALS, A, BCMV and HB. Yield 1.2–2.3 mt/ha. Large seeds

Central, and Rift valley

 

Kenya Early

Moderate resistance to R, CBB, ALS, A and BCMV. Yield 1.1–2.2 mt/ha. Large seeds

Eastern, Nyanza, Central, Western and Rift valley

 

Kenya Red Kidney

Moderately resistance to R, CBB, ALS, A, BCMV and BCMNV. Yield 1.1–2.8 mt/ha. Large seeds

Eastern, Nyanza, Central, Western

 

Kenya Wonder

Moderate resistance to HB, CBB, ALS, A and BCMV. Yield 1.1–2 mt/ha. Large seeds

Eastern, Nyanza, Central, Western and Rift valley

 

Kenya Sugar Bean

Moderate resistance to HB, CBB, ALS, A and BCMV. Yield 1.1–1.8. mt/ha. Large seeds

Eastern, Nyanza, Central, Western and Rift valley

 

Tasha

Resistant to ALS, A and RR. Yield 1.1–2.1. mt/ha. Large/calima type seeds

Eastern and Rift valley

 

Kenya Afya

High grain iron and zinc concentration, medium and brownish yellow seeds. Yield 2.2–3.2 mt/ha. Calima type seeds

Eastern, Nyanza, Central, Western and Rift valley

 

Kenya Majano

High grain iron and zinc concentration. Yield 2.2–3 mt/ha. Medium and yellow seeds

Eastern, Nyanza, Central, Western and Rift valley

 

Kenya Madini

High grain iron and zinc concentration. Yield 2.2–2.5 mt/ha. Calima type seeds

Eastern, Nyanza, Central, Western and Rift valley

 

Kenya mavuno

Resistant to A and CBB. Yield 2–3 mt/ha. Medium/Calima type seeds

Eastern, Nyanza and Central,

 

Kenya Safi

Resistant to A. Yield 1.2–1.5 mt/ha. Medium grains/Calima type seeds

Eastern, Nyanza, Central, Western and Rift valley

 

Mwitemania

Drought tolerant. Yield 1.2–1.5 mt/ha. Medium size/pinto seeds

Eastern, Nyanza, Central, and Rift valley

 

Katheka (KATB 1)

Early maturity, heat and drought tolerant, cooks fast. Yield 1.2–1.5 mt/ha. Medium round yellow seeds

Nyanza, Central, Western and Rift valley

 

KATB 9

Tolerant to heat, high yielding, drought tolerant, early maturing, cooks fast. Yield 1–1.8 mt/ha. Medium round red seeds

Eastern, Nyanza, Central, Western and Rift valley

Malawi

Namajengo

High yielding. Yield 2.5 mt/ha

Livingstonia, Viphya, Dedza

 

Kanzama

High yielding and wide adaptation. Yield 2.5 mt/ha

Chitipa, Livingstonia, Viphya

 

Kalima

Tolerant to ALS and A. 2 mt/ha. Large seeds

Chitipa, Livingstonia, Viphya, Dedza

 

Bunda 3

Resistant to BCMV. Yield 2 mt/ha

Lake Basin, Phalombe

 

Kambidzi

High yielding, tolerant to ALS. Yield 2.5 mt/ha

Lake Basin, Phalombe

 

Nagaga

Tolerant to low soil fertility, resistant to BCMV. Yield 2 mt/ha

Mzimba, Lilongwe, Dowa, Nmawera, Shire

 

Kabalabala

Tolerant to ALS and CBW. Yield 2.5 mt/ha

Lake Basin, Phalombe

 

NUA 59

Early maturing, high grain iron and zinc concentration. Yield 1.7 mt/ha

Mzimba, Lilongwe, Dowa, Nmawera, Shire

 

Iris

Drought tolerant, early maturing. Yield 3.5 mt/ha. Carioca type seeds

Guruve, Gokwe south and Nyanga

 

Cardinal

Wide adaptation. Yield 4 mt/ha. Calima type seeds

Kwekwe, Marondera, Chipinge and Lupane

 

Speckled Ice

Wide adaptation. Yield 3.5 mt/ha. Sugar type seeds

Chimanimani, Shrugwi, Binga and Chirumanzu

 

NUA 45

Good taste, high grain iron and zinc concentration, quick to cook. Yield 2.4 mt/ha. Calima type seeds

Guruve, Gokwe south and Nyanga

 

Gloria

Attractive seed color (local market). Yield 2.4 mt/ha

Chimanimani, Shrugwi, Binga and Chirumanzu

 

Bounty

Yield 2 mt/ha. Sugar type seeds

Chimanimani, Shrugwi, Binga and Chirumanzu

 

PAN148

Widely adapted, resistant to BCMV. Yield 2.1 mt/ha. Sugar type seeds

Kwekwe, Marondera, Chipinge and Lupane

 

PAN127

Moderately tolerant to rust and resistant to BCMV. Yield 1.6 mt/ha. Sugar type seeds

Kwekwe, Marondera, Chipinge and Lupane

Uganda

NABE 1

Tolerant to ALS, A and BCMV. Medium/large/sugar/red mottled/yellow seeds

Western and Eastern Tall grass

 

Kanyebwa

Tolerant to ALS, A and BCMV. Medium/large/sugar/red mottled/Yellow seeds

Western and Eastern Tall grass

 

Nambale

Tolerant to ALS, A and BCMV. Medium/large/sugar/red mottled/Yellow seeds

Western and Eastern Tall grass

 

NABE 4

Tolerant to ALS, A and BCMV. Medium/large/sugar/red mottled/Yellow seeds

Western and Eastern Tall grass

 

K132, Kanyebwa, Otawa, NABE13, NABE 12C and Kamwanyi

Tolerant to ALS, CBW, wide adaptation. Sugar, medium to large red mottled, small to medium red and brown seeds

Eastern tall grass and Mt. Elgon regions

Burundi

Magorori

Tolerant to BCMV, A, BR and R; intermediate reaction to ALS. Yield 1.2–2 mt/ha. Medium grains/calima seeds

All high-altitude areas in Burundi

 

Murengeti

Tolerant to ALS, BCMV, R, BR and A; intermediate reaction to HB. Yield 1.5–2 mt/ha. Large grains/kablanket seeds

All high-altitude areas in Burundi

 

Kinure

Tolerant to ALS, BCMV, A, BR and R. Yield 1.5–2 mt/ha. Medium/purple seeds

All high-altitude areas in Burundi

 

Mbunduguru

Tolerant to BCMV, A and BR; resistant to ALS; Intermediate reaction to R. Yield 1–1.3 mt/ha. Medium round yellow seeds

Low to medium altitudes

 

Inakayoba

Tolerant to BCMV, ALS and R; resistant to A and BR.

Low to medium altitudes

 

Inamunihire

Tolerant to A, ALS, BCMV; intermediate reaction to BR. Yield 1.2–2 mt/ha. Large/yellow seeds

Medium altitudes

 

Mubogora

Tolerant to A, ALS, BCMV. Yield 1–1.5 t/ha. Large/red kidney seeds

Medium to high altitudes

 

Bishaza

Resistant to ALS; tolerant to BCMV and CBB; intermediate reaction to A. Yield 1 mt/ha. Medium/Sugar seeds

Medium to high altitudes

 

Bisera

Tolerant to BCMV, ALS, A, BR and RR. Yield 1–1.5 mt/ha. Large/red mottled seeds

Medium altitudes

  1. Sources: Monyo Emmanuel and Laxmipathi Gowda (2014); Mukankusi et al. (2018); Katungi et al. (2017). Papias H. Binagwa is acknowledged for contributing to this table design
  2. Key: A Anthracnose, ALS Angular Leaf Spot, BCMNV Bean Common Mosaic Necrosis Virus, BCMV Bean Common Mosaic Virus, BGMV Bean Golden Mosaic Virus, BR Black Root, CBB Common Bacterial Blight, CBW Common Bacterial Wilt, HB Halo Blight, R Rust, RR Root Rot

5.1.2.2 Most Popular Common Bean Varieties in Central American Countries, Their Characteristics and Site of Cultivation

Country

Variety name

Characteristics

Site of cultivation

Costa Rica

Suru

Days to harvest 74–80 days. Yield 1.9 mt/ha. 100-SW of 22 g. White seeds

Whole country, recommended in Brunca region

 

Tonjibe

Days to harvest 75–80 days. Resistant to BCMV. Yield 1.5 mt/ha. 100-SW of 23 g. Red seeds

Whole country, recommended in Brunca region

 

Chánguena

Days to harvest average 75 days. Resistant to BCMV. Yield 2.3 mt/ha. 100-SW of 21 g. Red seeds

Whole country, recommended in Central region

 

Curré

Days to harvest 74–79 days. Resistant to BCMV. Yield 1.8 mt/ha. 100-SW of 21.5 g. Red seeds

Whole country, recommended in Central region

 

Gibre

Days to harvest 65–70 days. Resistant to BCMV. Yield potential until 2.5 mt/ha. Red seeds

Whole country, recommended in Central region

 

Telire

Days to harvest 72–80 days. Resistant to BCMV and BGMV. Yield 1.8 mt/ha. 100-SW of 23 g. Small red seeds

Whole country, recommended in Brunca region

 

Cabécar

Days to harvest 72–75 days. Resistant to BCMV and BGMV. Yield 1.9 mt/ha. 100-SW of 24 g. Small red seeds

Whole country, recommended in north Huetar region

 

UCR 55

Days to harvest between 80 and 104 days. Yield 2.3 mt/ha. Black seeds

Whole country, recommended in sites above 840 m under sea level

 

Bríbrí

Days to harvest 76–80 days. Resistant to BCMV. Yield 1.7 mt/ha. 100-SW of 18–20 g. Small red seeds

Whole country, recommended in Chorotega region

El Salvador

CENTA Ferromás

Resistant to BCMV and BGYMV. Yield 1.5 mt/ha. High grain iron and zinc concentration. Small red seeds

Most regions

 

CENTA Nahuat

Resistant to BCMV and BGYMV. Yield 1.6 mt/ha. Small red seeds

Most regions

 

CENTA CPC

Resistant to BCMV and BGYMV. Tolerant to heat and drought. Yield 1.4 mt/ha. Small red seeds

Most regions

 

CENTA Pipil

Resistant to BCMV and BGMV. Tolerant to heat and drought. Small red (semi-dark) seeds

Most regions

 

CENTA San Andrés

Resistant to BCMV and BGMV. Tolerant to heat and drought. Small red (light) seeds

Most regions

 

CENTA 2000

Resistant to BCMV and BGMV. Tolerant to R. Tolerant to heat and drought. Small red (semi-dark) seeds

Most regions

Guatemala

ICTA Chortí

Days to harvest in average 78 days. Tolerant to R, BGMV, ALS and drought. High grain iron and zinc concentration. Yield 1.9 mt/ha. Opaque black seeds

Regions close to the conditions of Jutiapa, Jalapa and Chiquimula

 

ICTA Peten

Days to harvest in average of 78 days. Tolerant to R and BGMV. High grain iron concentration. Yield 2.2 mt/ha. Black seeds

Regions close to the conditions of Peten

 

ICTA Sayaxche

Days to harvest in average of 88 days. Tolerant to R and BGMV. Yield 2.5 mt/ha. Black seeds

Regions close to the conditions of Peten

 

ICTA Superchiva

Days to harvest 120–135 days. High grain iron and zinc concentration. Tolerant to fungus diseases. Yield 1.6 mt/ha. Black seeds

Highland regions

 

Hunapú

Days to harvest 120–135 days. Purple pods, Tolerant to R. Yield 1.9 mt/ha. Black seeds

Central and Western Altiplano region

 

Altanse

Days to harvest 120–135 days. White pods, Tolerant to R. Yield 1.9 mt/ha. Black seeds

Central and Western Altiplano region

 

Texel

Days to harvest 100–110 days. Yield 0.9 mt/ha. Black seeds

Central and Western Altiplano region

Honduras

Honduras Nutritivo

Resistant to BCMV and tolerant to BGYMV. Intermediate tolerance to CBB and R. High grain iron concentration. Small red seeds

Most regions

 

Azavache 40

Days to harvest 76–80 days. Resistant to BCMV and BCMNV. Intermediate tolerance to BGYMV, CBB, WB and R. Yield 2.5 mt/ha. Black seeds

Most regions

 

Lenca Precoz

Days to harvest 60–70 days. Resistant to BCMV, BCMNV and BGYMV. Tolerant to CBB, WB and R. Yield 2.2 mt/ha. Small black seeds

Most regions

 

Cardenal

Days to harvest 65–70 days. Resistant to BCMV and BGYMV. Tolerant to WB and R. Yield 1.8 mt/ha. Small red seeds

Most regions

 

Deorho

Days to harvest 70–80 days. Resistant to BCMV and BGYMV. Tolerant to ALS, WB, R, drought, heat and low soil fertility. Yield 2 mt/ha. Small red seeds

Most regions

 

Paraisito Mejorado 2

Days to harvest 70–75 days. Resistant to BCMV. Intermediate tolerant to BGYMV, CBB and R. Yield 1.7 mt/ha. Small light-red seeds

Most regions

 

Tío Canela 75

Days to harvest 70–80 days. Resistant to BCMV and BGYMV Intermediate tolerance to A and R. Yield 1.7 mt/ha. Small red seeds

Most regions

 

Amadeus 77

Days to harvest 70–75 days. Resistant to BCMV and BGYMV. Tolerant to drought. Yield 1.7 mt/ha. Small red seeds

Most regions

 

Carrizalito

Days to harvest 70–75 days. Resistant to BCMV and BGYMV. Tolerant to drought. Yield 2.3 mt/ha. Small red seeds

Most regions

Nicaragua

INTA Fuerte Sequía

Days to harvest 72–75 days. Resistant to BCMV and BGYMV. Tolerant to drought and heat. Yield 1.6 mt/ha. Dark red seeds

Most regions

 

INTA Precoz

Days to harvest 68–70 days. Resistant to BCMV and BGYMV. Tolerant to drought. Yield 1.3 mt/ha. Small red seeds

Most regions

 

INTA Rojo

Days to harvest 75–78 days. Resistant to BCMV and BGMV. Yield 1.6 mt/ha. Light red seeds

Most regions

 

INTA Cárdenas

Days to harvest 78–80 days. Resistant to BCMV and BGMV. Yield 1.6 mt/ha. Black seeds

Most regions

 

INTA Ferroso

Days to harvest 72–74 days. Resistant to BCMV and BGMV. High grain iron concentration. Yield 1.2 mt/ha. Small red seeds

Most regions

 

INTA Nutritivo

Days to harvest 68–72 days. Resistant to BCMV. Yield 1.6 mt/ha. High grain iron concentration. Red (light) seeds

Most regions

 

DOR364

Days to harvest 80–85 days. Resistant to BCMV and BGMV. Yield 2.3 mt/ha. Deep dark red seeds

Most regions

  1. Sources: Araya and Hernández (2007); CENTA (2018); DICTA (2018); ICTA (2018); INTA (2018); INTA (2013); Reyes (2012)
  2. Key: 100-SW average 100-seeds weight, A Anthracnose, ALS Angular Leaf Spot, BCMNV Bean Common Mosaic Necrosis Virus, BCMV Bean Common Mosaic Virus, BGMV Bean Golden Mosaic Virus, BGYMV Bean Golden Yellow Mosaic Virus, CBB Common Bacterial Blight, R Rust, WB Web Blight

5.1.2.3 Most Popular Common Bean Varieties in South America, Their Characteristics and Site of Cultivation

Country

Variety name

Characteristics

Site of cultivation

Brazil

BRS Ametista

Tolerant to A, CBB and R. Moderate resistance to Fusarium wilt. 100-SW of 30 g

East and central regions

 

BRS Notável

Resistant to CBB and moderately resistant to A, R, Fusarium wilt and Curtobacterium. 100-SW of 26 g

East and central regions

 

BRSMG Madreperola

Moderate potential resistance to A and ALS. 100-SW of 24.5 g

South-east regions

 

BRS Estilo

Adapted to mechanical harvest. Moderately resistant to A and R. 100-SW of 26 g

South and central regions

 

BRSMG Realce

High productive potential and excellent culinary properties. Tolerant to A, CBB, R, Fusarium wilt and Curtobacterium. 100-SW of 43 g

South-east regions

 

BRS Radiante

Good culinary quality. Tolerant to A, R, ALS, Fusarium wilt and Curtobacterium. 100-SW of 44 g

South-east and central regions

 

BRS Agreste

Adapted to direct mechanized harvesting. Moderate resistant to A and Fusarium wilt. 100-SW of 25 g

East regions

 

BRS Vereda

Uniform coloring and excellent culinary properties. Moderately resistant to A, ALS and Fusarium wilt. 100-SW of 26 g

South regions

 

BRS Pitanga

Excellent culinary properties. Moderate resistance to A, R, ALS and Fusarium wilt. 100-SW of 20 g. Red seeds.

West and central regions

 

BRS Executivo

It is an option for producers interested in Sugar Bean type beans. 100-SW of 76 g

South regions

 

BRS Embaixador

Moderate resistance to A and Fusarium wilt. Grains favored for the national market, providing price advantages and with potential for export. 100-SW of 63 g. Red seeds

South regions

 

Jalo Precoce

Early maturing and tolerant to CBB, R and Fusarium wilt. 100-SW of 35 g. Cream seeds

South-east and central regions

 

BRS Esplendor

Adapted to direct mechanical harvesting. Resistant to CBB and tolerant to A, R and Fusarium wilt and Curtobacterium. 100-SW of 22 g. Black seeds

South-east and central regions

 

BRS Campeiro

Excellent culinary qualities. Adapted to direct mechanized harvest. Tolerant to A, R and Fusarium wilt. 100-SW of 25 g. Black seeds

South-east and central regions

  1. Source: Embrapa (2013)
  2. Note: Due to the special condition explained in Sect. 5.2.2, this appendix contains information about only particular varieties from some African countries, Brazil and Central America illustrating the high genetic diversity available for cultivation and breeding. Furthermore, there are a considerable number of varieties from participatory breeding and thousands of landraces and old cultivars with significant relevance to the food security in the developing world
  3. Key: A Anthracnose, ALS Angular Leaf Spot, CBB Common Bacterial Blight, R Rust, 100-SW Average 100-seeds weight

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiménez, O.R. (2019). Common Bean (Phaseolus vulgaris L.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_5

Download citation

Publish with us

Policies and ethics