Skip to main content

Imaging and Monitoring in Pediatric Acute Respiratory Distress Syndrome

  • Chapter
  • First Online:
Pediatric Acute Respiratory Distress Syndrome

Abstract

Understanding of chest imaging is paramount in the diagnosis and treatment of PARDS and, as recommended by the consensus conference on PARDS (PALICC), children with or at risk of PARDS should receive, at a minimum, clinical monitoring of cardiac and respiratory rates, continuous pulse oximetry, and blood pressure. In the first part of this chapter, we summarize the role of each imaging modality in the diagnosis of PARDS and as a tool of treatment effect examination perspectives. In the second part of the chapter, we describe and summarize respiratory system variables related to PARDS management, which is particularly derived from measurements in a nonairway circuit, including oxygen parameters, severity scores, and respiratory muscle function. The hemodynamic monitoring in PARDS is out of scope of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AVDSf:

Alveolar dead space fraction

CT:

  Computed tomography

EAdi:

   Electrical activity of diaphragm

EIT:

   Electric impedance tomography

FIO2:

   Fraction of inspired oxygen

FRC:

   Functional residual capacity

LIS:

   Lung injury score

NVE:

Neuroventilatory efficiency

OI:

   Oxygen index

OSI:

   Oxygen saturation index

P/F:

   PaO2/FIO2

PaO2:

   Partial pressure of oxygen

Paw:

   Mean airway pressure

Pdi:

   Transdiaphragmatic pressure

Pdimax:

Maximum inspiratory transdiaphragmatic pressure

PEmax expiratory:

Muscle strength

Pes:

      Esophageal pressure

PET:

      Positron emission tomography

Pga:

      Gastric pressure

PImax:

      Global inspiratory

PRP:

      Pressure–rate product

RIP:

      Respiratory inductive plethysmography

S/F:

      SpO2/FIO2

SpO2:

      Oxygen saturation

Ti:

      Inspiratory time

TTI:

      Tension–time index

TTmus:

     Noninvasive TTI

Ttot:

      Total respiratory cycle time

X-ray:

    Radiograph

References

  1. Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L. Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994;149(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  2. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38(10):1573–82.

    Article  PubMed  Google Scholar 

  3. Khemani RG, Smith L, Lopez-Fernandez YM, Kwok J, Morzov R, Klein MJ, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7(2):115–28.

    Article  PubMed  Google Scholar 

  4. Angoulvant F, Llor J, Alberti C, Kheniche A, Zaccaria I, Garel C, et al. Inter-observer variability in chest radiograph reading for diagnosing acute lung injury in children. Pediatr Pulmonol. 2008;43(10):987–91.

    Article  PubMed  Google Scholar 

  5. Rubenfeld GD, Caldwell E, Granton J, Hudson LD, Matthay MA. Interobserver variability in applying a radiographic definition for ARDS. Chest. 1999;116(5):1347–53.

    Article  CAS  PubMed  Google Scholar 

  6. Khemani RG, Smith LS, Zimmerman JJ, Erickson S. Pediatric acute lung injury consensus conference G. pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S23–40.

    Article  PubMed  Google Scholar 

  7. Ganapathy A, Adhikari NK, Spiegelman J, Scales DC. Routine chest x-rays in intensive care units: a systematic review and meta-analysis. Crit Care. 2012;16(2):R68.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hejblum G, Chalumeau-Lemoine L, Ioos V, Boelle PY, Salomon L, Simon T, et al. Comparison of routine and on-demand prescription of chest radiographs in mechanically ventilated adults: a multicentre, cluster-randomised, two-period crossover study. Lancet. 2009;374(9702):1687–93.

    Article  PubMed  Google Scholar 

  9. Quasney MW, Goodman DM, Billow M, Chiu H, Easterling L, Frankel L, et al. Routine chest radiographs in pediatric intensive care units. Pediatrics. 2001;107(2):241–8.

    Article  CAS  PubMed  Google Scholar 

  10. Zaglam N, Jouvet P, Flechelles O, Emeriaud G, Cheriet F. Computer-aided diagnosis system for the acute respiratory distress syndrome from chest radiographs. Comput Biol Med. 2014;52:41–8.

    Article  PubMed  Google Scholar 

  11. Henzler D, Mahnken AH, Wildberger JE, Rossaint R, Gunther RW, Kuhlen R. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury. Eur Radiol. 2006;16(6):1351–9.

    Article  PubMed  Google Scholar 

  12. Luecke T, Corradi F, Pelosi P. Lung imaging for titration of mechanical ventilation. Curr Opin Anaesthesiol. 2012;25(2):131–40.

    Article  PubMed  Google Scholar 

  13. Pesenti A, Musch G, Lichtenstein D, Mojoli F, Amato MBP, Cinnella G, et al. Imaging in acute respiratory distress syndrome. Intensive Care Med. 2016;42(5):686–98.

    Article  PubMed  Google Scholar 

  14. Pelosi P, Rocco PR, de Abreu MG. Use of computed tomography scanning to guide lung recruitment and adjust positive-end expiratory pressure. Curr Opin Crit Care. 2011;17(3):268–74.

    Article  PubMed  Google Scholar 

  15. Bruhn A, Bugedo D, Riquelme F, Varas J, Retamal J, Besa C, et al. Tidal volume is a major determinant of cyclic recruitment-derecruitment in acute respiratory distress syndrome. Minerva Anestesiol. 2011;77(4):418–26.

    CAS  PubMed  Google Scholar 

  16. Bugedo G, Bruhn A, Hernandez G, Rojas G, Varela C, Tapia JC, et al. Lung computed tomography during a lung recruitment maneuver in patients with acute lung injury. Intensive Care Med. 2003;29(2):218–25.

    Article  PubMed  Google Scholar 

  17. Burnham EL, Hyzy RC, Paine R 3rd, Kelly AM, Quint LE, Lynch D, et al. Detection of fibroproliferation by chest high-resolution CT scan in resolving ARDS. Chest. 2014;146(5):1196–204.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ichikado K, Muranaka H, Gushima Y, Kotani T, Nader HM, Fujimoto K, et al. Fibroproliferative changes on high-resolution CT in the acute respiratory distress syndrome predict mortality and ventilator dependency: a prospective observational cohort study. BMJ Open. 2012;2(2):e000545.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boriosi JP, Cohen RA, Summers E, Sapru A, Hanson JH, Gildengorin G, et al. Lung aeration changes after lung recruitment in children with acute lung injury: a feasibility study. Pediatr Pulmonol. 2012;47(8):771–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Solth A, Mukerji N, Strachan R. Reducing the radiation exposure from CT scanning in children with shunts: a nationwide survey and a departmental CT protocol. Br J Neurosurg. 2018;32(5):558–62.

    Article  PubMed  Google Scholar 

  21. Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  22. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Constantin JM, Futier E. Lung imaging in patients with acute respiratory distress syndrome: from an understanding of pathophysiology to bedside monitoring. Minerva Anestesiol. 2013;79(2):176–84.

    CAS  PubMed  Google Scholar 

  25. Gardelli G, Feletti F, Nanni A, Mughetti M, Piraccini A, Zompatori M. Chest ultrasonography in the ICU. Respir Care. 2012;57(5):773–81.

    Article  PubMed  Google Scholar 

  26. Zompatori M, Ciccarese F, Fasano L. Overview of current lung imaging in acute respiratory distress syndrome. Eur Respir Rev. 2014;23(134):519–30.

    Article  PubMed  Google Scholar 

  27. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012;38(4):577–91.

    Article  PubMed  Google Scholar 

  28. Xirouchaki N, Magkanas E, Vaporidi K, Kondili E, Plataki M, Patrianakos A, et al. Lung ultrasound in critically ill patients: comparison with bedside chest radiography. Intensive Care Med. 2011;37(9):1488–93.

    Article  PubMed  Google Scholar 

  29. Copetti R, Soldati G, Copetti P. Chest sonography: a useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound. 2008;6:16.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Santuz P, Bonetti P, Serra A, Biban P. Ultrasound-guided lung recruitment in a young infant with ARDS. Paediatr Anaesth. 2010;20(9):895–6.

    Article  PubMed  Google Scholar 

  31. Kobr J, Fremuth J, Pizingerova K, Sasek L, Jehlicka P, Fikrlova S, et al. Repeated bedside echocardiography in children with respiratory failure. Cardiovasc Ultrasound. 2011;9:14.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39(5):801–10.

    Article  PubMed  Google Scholar 

  33. Hinz J, Neumann P, Dudykevych T, Andersson LG, Wrigge H, Burchardi H, et al. Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest. 2003;124(1):314–22.

    Article  PubMed  Google Scholar 

  34. Bayford RH. Bioimpedance tomography (electrical impedance tomography). Annu Rev Biomed Eng. 2006;8:63–91.

    Article  CAS  PubMed  Google Scholar 

  35. Muders T, Luepschen H, Putensen C. Impedance tomography as a new monitoring technique. Curr Opin Crit Care. 2010;16(3):269–75.

    Article  PubMed  Google Scholar 

  36. Wolf GK, Gomez-Laberge C, Rettig JS, Vargas SO, Smallwood CD, Prabhu SP, et al. Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury∗. Crit Care Med. 2013;41(5):1296–304.

    Article  PubMed  Google Scholar 

  37. Leonhardt S, Lachmann B. Electrical impedance tomography: the holy grail of ventilation and perfusion monitoring? Intensive Care Med. 2012;38(12):1917–29.

    Article  PubMed  Google Scholar 

  38. Lowhagen K, Lundin S, Stenqvist O. Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome assessed by electric impedance tomography. Minerva Anestesiol. 2010;76(12):1024–35.

    CAS  PubMed  Google Scholar 

  39. Domenighetti G, Maggiorini M. Electrical impedance tomography to guide ventilation in ALI-ARDS patients: a research tool for zealous physiologists or an imminent support for the real world intensivist? Minerva Anestesiol. 2010;76(12):986–8.

    CAS  PubMed  Google Scholar 

  40. Lundin S, Stenqvist O. Electrical impedance tomography: potentials and pitfalls. Curr Opin Crit Care. 2012;18(1):35–41.

    Article  PubMed  Google Scholar 

  41. Rodrigues RS, Miller PR, Bozza FA, Marchiori E, Zimmerman GA, Hoffman JM, et al. FDG-PET in patients at risk for acute respiratory distress syndrome: a preliminary report. Intensive Care Med. 2008;34(12):2273–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bellani G, Amigoni M, Pesenti A. Positron emission tomography in ARDS: a new look at an old syndrome. Minerva Anestesiol. 2011;77(4):439–47.

    CAS  PubMed  Google Scholar 

  43. Musch G. Positron emission tomography: a tool for better understanding of ventilator-induced and acute lung injury. Curr Opin Crit Care. 2011;17(1):7–12.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Emeriaud G, Newth CJ. Pediatric acute lung injury consensus conference G. monitoring of children with pediatric acute respiratory distress syndrome: proceedings from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16(5 Suppl 1):S86–101.

    Article  PubMed  Google Scholar 

  45. Chiumello D, Chidini G, Calderini E, Colombo A, Crimella F, Brioni M. Respiratory mechanics and lung stress/strain in children with acute respiratory distress syndrome. Ann Intensive Care. 2016;6(1):11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sivieri EM, Wolfson MR, Abbasi S. Pulmonary mechanics measurements by respiratory inductive plethysmography and esophageal manometry: methodology for infants on non-invasive respiratory support. J Neonatal Perinatal Med. 2019. [Epub ahead of print]

    Google Scholar 

  47. Loring SH, Topulos GP, Hubmayr RD. Transpulmonary pressure: the importance of precise definitions and limiting assumptions. Am J Respir Crit Care Med. 2016;194(12):1452–7.

    Article  PubMed  Google Scholar 

  48. Chiumello D, Cressoni M, Colombo A, Babini G, Brioni M, Crimella F, et al. The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Med. 2014;40(11):1670–8.

    Article  PubMed  Google Scholar 

  49. Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takeuchi M, Imanaka H, Miyano H, Kumon K, Nishimura M. Effect of patient-triggered ventilation on respiratory workload in infants after cardiac surgery. Anesthesiology. 2000;93(5):1238–44; discussion 5A.

    Article  CAS  PubMed  Google Scholar 

  51. Willis BC, Graham AS, Yoon E, Wetzel RC, Newth CJ. Pressure-rate products and phase angles in children on minimal support ventilation and after extubation. Intensive Care Med. 2005;31(12):1700–5.

    Article  PubMed  Google Scholar 

  52. von Ungern-Sternberg BS, Hammer J, Schibler A, Frei FJ, Erb TO. Decrease of functional residual capacity and ventilation homogeneity after neuromuscular blockade in anesthetized young infants and preschool children. Anesthesiology. 2006;105(4):670–5.

    Article  Google Scholar 

  53. Edberg KE, Sandberg K, Silberberg A, Ekstrom-Jodal B, Hjalmarson O. Lung volume, gas mixing, and mechanics of breathing in mechanically ventilated very low birth weight infants with idiopathic respiratory distress syndrome. Pediatr Res. 1991;30(5):496–500.

    Article  CAS  PubMed  Google Scholar 

  54. Sivan Y, Deakers TW, Newth CJ. An automated bedside method for measuring functional residual capacity by N2 washout in mechanically ventilated children. Pediatr Res. 1990;28(5):446–50.

    Article  CAS  PubMed  Google Scholar 

  55. Yehya N, Bhalla AK, Thomas NJ, Khemani RG. Alveolar dead space fraction discriminates mortality in pediatric acute respiratory distress syndrome. Pediatr Crit Care Med. 2016;17(2):101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ghuman AK, Newth CJ, Khemani RG. The association between the end tidal alveolar dead space fraction and mortality in pediatric acute hypoxemic respiratory failure. Pediatr Crit Care Med. 2012;13(1):11–5.

    Article  PubMed  Google Scholar 

  57. Riou Y, Leclerc F, Neve V, Dupuy L, Noizet O, Leteurtre S, et al. Reproducibility of the respiratory dead space measurements in mechanically ventilated children using the CO2SMO monitor. Intensive Care Med. 2004;30(7):1461–7.

    Article  CAS  PubMed  Google Scholar 

  58. Nuckton TJ, Goldreich D, Rogaski KD, Lessani TM, Higgins PJ, Claman DM. Hypothermia from prolonged immersion: biophysical parameters of a survivor. J Emerg Med. 2002;22(4):371–4.

    Article  PubMed  Google Scholar 

  59. Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–6.

    Article  PubMed  Google Scholar 

  60. Hubble CL, Gentile MA, Tripp DS, Craig DM, Meliones JN, Cheifetz IM. Deadspace to tidal volume ratio predicts successful extubation in infants and children. Crit Care Med. 2000;28(6):2034–40.

    Article  CAS  PubMed  Google Scholar 

  61. Lum L, Saville A, Venkataraman ST. Accuracy of physiologic deadspace measurement in intubated pediatric patients using a metabolic monitor: comparison with the Douglas bag method. Crit Care Med. 1998;26(4):760–4.

    Article  CAS  PubMed  Google Scholar 

  62. Paret G, Ziv T, Barzilai A, Ben-Abraham R, Vardi A, Manisterski Y, et al. Ventilation index and outcome in children with acute respiratory distress syndrome. Pediatr Pulmonol. 1998;26(2):125–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bourgoin P, Baudin F, Brossier D, Emeriaud G, Wysocki M, Jouvet P. Assessment of Bohr and Enghoff dead space equations in mechanically ventilated children. Respir Care. 2017;62(4):468–74.

    Article  PubMed  Google Scholar 

  64. Kogan D, Jain A, Kimbro S, Gutierrez G, Jain V. Respiratory inductance plethysmography improved diagnostic sensitivity and specificity of obstructive sleep apnea. Respir Care. 2016;61(8):1033–7.

    Article  PubMed  Google Scholar 

  65. Miller KM, Kim AY, Yaster M, Kudchadkar SR, White E, Fackler J, et al. Long-term tolerability of capnography and respiratory inductance plethysmography for respiratory monitoring in pediatric patients treated with patient-controlled analgesia. Paediatr Anaesth. 2015;25(10):1054–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mayer OH, Clayton RG Sr, Jawad AF, McDonough JM, Allen JL. Respiratory inductance plethysmography in healthy 3- to 5-year-old children. Chest. 2003;124(5):1812–9.

    Article  PubMed  Google Scholar 

  67. Tobin MJ, Jenouri G, Lind B, Watson H, Schneider A, Sackner MA. Validation of respiratory inductive plethysmography in patients with pulmonary disease. Chest. 1983;83(4):615–20.

    Article  CAS  PubMed  Google Scholar 

  68. Konno K, Mead J. Measurement of the separate volume changes of rib cage and abdomen during breathing. J Appl Physiol. 1967;22(3):407–22.

    Article  CAS  PubMed  Google Scholar 

  69. Al-Khalidi FQ, Saatchi R, Burke D, Elphick H, Tan S. Respiration rate monitoring methods: a review. Pediatr Pulmonol. 2011;46(6):523–9.

    Article  CAS  PubMed  Google Scholar 

  70. Rehouma H, Noumeir R, Bouachir W, Jouvet P, Essouri S. 3D imaging system for respiratory monitoring in pediatric intensive care environment. Comput Med Imaging Graph. 2018;70:17–28.

    Article  PubMed  Google Scholar 

  71. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, et al. The American-European consensus conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818–24.

    Article  CAS  PubMed  Google Scholar 

  72. Flori HR, Glidden DV, Rutherford GW, Matthay MA. Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med. 2005;171(9):995–1001.

    Article  PubMed  Google Scholar 

  73. Doyle RL, Szaflarski N, Modin GW, Wiener-Kronish JP, Matthay MA. Identification of patients with acute lung injury. Predictors of mortality. Am J Respir Crit Care Med. 1995;152(6 Pt 1):1818–24.

    Article  CAS  PubMed  Google Scholar 

  74. Khemani RG, Conti D, Alonzo TA, Bart RD 3rd, Newth CJ. Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med. 2009;35(8):1428–37.

    Article  PubMed  Google Scholar 

  75. Thomas NJ, Shaffer ML, Willson DF, Shih MC, Curley MA. Defining acute lung disease in children with the oxygenation saturation index. Pediatr Crit Care Med. 2010;11(1):12–7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Khemani RG, Patel NR, Bart RD 3rd, Newth CJL. Comparison of the pulse oximetric saturation/fraction of inspired oxygen ratio and the PaO2/fraction of inspired oxygen ratio in children. Chest. 2009;135(3):662–8.

    Article  PubMed  Google Scholar 

  77. Khemani RG, Thomas NJ, Venkatachalam V, Scimeme JP, Berutti T, Schneider JB, et al. Comparison of SpO2 to PaO2 based markers of lung disease severity for children with acute lung injury. Crit Care Med. 2012;40(4):1309–16.

    Article  CAS  PubMed  Google Scholar 

  78. Curley MA, Hibberd PL, Fineman LD, Wypij D, Shih MC, Thompson JE, et al. Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA. 2005;294(2):229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB, et al. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132(2):410–7.

    Article  PubMed  Google Scholar 

  80. Murray JF, Matthay MA, Luce JM, Flick MR. An expanded definition of the adult respiratory distress syndrome. Am Rev Respir Dis. 1988;138(3):720–3.

    Article  CAS  PubMed  Google Scholar 

  81. Kangelaris KN, Calfee CS, May AK, Zhuo H, Matthay MA, Ware LB. Is there still a role for the lung injury score in the era of the Berlin definition ARDS? Ann Intensive Care. 2014;4(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bohn D, Tamura M, Perrin D, Barker G, Rabinovitch M. Ventilatory predictors of pulmonary hypoplasia in congenital diaphragmatic hernia, confirmed by morphologic assessment. J Pediatr. 1987;111(3):423–31.

    Article  CAS  PubMed  Google Scholar 

  83. Rais-Bahrami K, Rivera O, Mikesell GT, Short BL. Continuous blood gas monitoring using an in-dwelling optode method: comparison to intermittent arterial blood gas sampling in ECMO patients. J Perinatol. 2002;22(6):472–4.

    Article  CAS  PubMed  Google Scholar 

  84. Easley RB, Johnson TR, Tobias JD. Continuous pH monitoring using the Paratrend 7 inserted into a peripheral vein in a patient with shock and congenital lactic acidosis. Clin Pediatr (Phila). 2002;41(5):351–5.

    Article  Google Scholar 

  85. Coule LW, Truemper EJ, Steinhart CM, Lutin WA. Accuracy and utility of a continuous intra-arterial blood gas monitoring system in pediatric patients. Crit Care Med. 2001;29(2):420–6.

    Article  CAS  PubMed  Google Scholar 

  86. Tobias JD, Connors D, Strauser L, Johnson T. Continuous pH and Pco2 monitoring during respiratory failure in children with the Paratrend 7 inserted into the peripheral venous system. J Pediatr. 2000;136(5):623–7.

    Article  CAS  PubMed  Google Scholar 

  87. Tobias JD, Meyer DJ, Helikson MA. Monitoring of pH and PCO2 in children using the Paratrend 7 in a peripheral vein. Can J Anaesth. 1998;45(1):81.

    Article  PubMed  Google Scholar 

  88. Hatherill M, Tibby SM, Durward A, Rajah V, Murdoch IA. Continuous intra-arterial blood-gas monitoring in infants and children with cyanotic heart disease. Br J Anaesth. 1997;79(5):665–7.

    Article  CAS  PubMed  Google Scholar 

  89. Weiss IK, Fink S, Edmunds S, Harrison R, Donnelly K. Continuous arterial gas monitoring: initial experience with the Paratrend 7 in children. Intensive Care Med. 1996;22(12):1414–7.

    Article  CAS  PubMed  Google Scholar 

  90. Berkenbosch JW, Tobias JD. Transcutaneous carbon dioxide monitoring during high-frequency oscillatory ventilation in infants and children. Crit Care Med. 2002;30(5):1024–7.

    Article  PubMed  Google Scholar 

  91. Bhalla AK, Khemani RG, Hotz JC, Morzov RP, Newth CJ. Accuracy of transcutaneous carbon dioxide levels in comparison to arterial carbon dioxide levels in critically ill children. Respir Care. 2019;64(2):201–8.

    Article  PubMed  Google Scholar 

  92. Uslu S, Bulbul A, Dursun M, Zubarioglu U, Turkoglu E, Guran O. Agreement of mixed venous carbon dioxide tension (PvCO2) and transcutaneous carbon dioxide (PtCO2) measurements in ventilated infants. Iran J Pediatr. 2015;25(1):e184.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tobias JD. Transcutaneous carbon dioxide monitoring in infants and children. Paediatr Anaesth. 2009;19(5):434–44.

    Article  PubMed  Google Scholar 

  94. Berkenbosch JW, Lam J, Burd RS, Tobias JD. Noninvasive monitoring of carbon dioxide during mechanical ventilation in older children: end-tidal versus transcutaneous techniques. Anesth Analg. 2001;92(6):1427–31.

    Article  CAS  PubMed  Google Scholar 

  95. Khemani RG, Celikkaya EB, Shelton CR, Kale D, Ross PA, Wetzel RC, et al. Algorithms to estimate PaCO2 and pH using noninvasive parameters for children with hypoxemic respiratory failure. Respir Care. 2014;59(8):1248–57.

    Article  PubMed  Google Scholar 

  96. Sivan Y, Eldadah MK, Cheah TE, Newth CJ. Estimation of arterial carbon dioxide by end-tidal and transcutaneous PCO2 measurements in ventilated children. Pediatr Pulmonol. 1992;12(3):153–7.

    Article  CAS  PubMed  Google Scholar 

  97. Harikumar G, Egberongbe Y, Nadel S, Wheatley E, Moxham J, Greenough A, et al. Tension-time index as a predictor of extubation outcome in ventilated children. Am J Respir Crit Care Med. 2009;180(10):982–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013;187(1):20–7.

    Article  PubMed  Google Scholar 

  99. Manczur TI, Greenough A, Pryor D, Rafferty GF. Assessment of respiratory drive and muscle function in the pediatric intensive care unit and prediction of extubation failure. Pediatr Crit Care Med. 2000;1(2):124–6.

    Article  CAS  PubMed  Google Scholar 

  100. Whitelaw WA, Derenne JP. Airway occlusion pressure. J Appl Physiol (1985). 1993;74(4):1475–83.

    Article  CAS  Google Scholar 

  101. Bellemare F, Grassino A. Evaluation of human diaphragm fatigue. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(5):1196–206.

    CAS  PubMed  Google Scholar 

  102. Bellemare F, Grassino A. Effect of pressure and timing of contraction on human diaphragm fatigue. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(5):1190–5.

    CAS  PubMed  Google Scholar 

  103. Hayot M, Guillaumont S, Ramonatxo M, Voisin M, Prefaut C. Determinants of the tension-time index of inspiratory muscles in children with cystic fibrosis. Pediatr Pulmonol. 1997;23(5):336–43.

    Article  CAS  PubMed  Google Scholar 

  104. Mulreany LT, Weiner DJ, McDonough JM, Panitch HB, Allen JL. Noninvasive measurement of the tension-time index in children with neuromuscular disease. J Appl Physiol (1985). 2003;95(3):931–7.

    Article  Google Scholar 

  105. Ramonatxo M, Boulard P, Prefaut C. Validation of a noninvasive tension-time index of inspiratory muscles. J Appl Physiol (1985). 1995;78(2):646–53.

    Article  CAS  Google Scholar 

  106. Tobin MJ, Laghi F, Brochard L. Role of the respiratory muscles in acute respiratory failure of COPD: lessons from weaning failure. J Appl Physiol (1985). 2009;107(3):962–70.

    Article  Google Scholar 

  107. Fauroux B, Aubertin G. Measurement of maximal pressures and the sniff manoeuvre in children. Paediatr Respir Rev. 2007;8(1):90–3.

    Article  PubMed  Google Scholar 

  108. Mortamet G, Larouche A, Ducharme-Crevier L, Flechelles O, Constantin G, Essouri S, et al. Patient-ventilator asynchrony during conventional mechanical ventilation in children. Ann Intensive Care. 2017;7(1):122.

    Article  PubMed  PubMed Central  Google Scholar 

  109. de Waal CG, Hutten GJ, Kraaijenga JV, de Jongh FH, van Kaam AH. Electrical activity of the diaphragm during nCPAP and high flow nasal cannula. Arch Dis Child Fetal Neonatal Ed. 2017;102(5):F434–F8.

    Article  PubMed  Google Scholar 

  110. Pham TM, O’Malley L, Mayfield S, Martin S, Schibler A. The effect of high flow nasal cannula therapy on the work of breathing in infants with bronchiolitis. Pediatr Pulmonol. 2015;50(7):713–20.

    Article  PubMed  Google Scholar 

  111. Nasef N, El-Gouhary E, Schurr P, Reilly M, Beck J, Dunn M, et al. High-flow nasal cannulae are associated with increased diaphragm activation compared with nasal continuous positive airway pressure in preterm infants. Acta Paediatr. 2015;104(8):e337–43.

    Article  CAS  PubMed  Google Scholar 

  112. Larouche A, Massicotte E, Constantin G, Ducharme-Crevier L, Essouri S, Sinderby C, et al. Tonic diaphragmatic activity in critically ill children with and without ventilatory support. Pediatr Pulmonol. 2015;50(12):1304–12.

    Article  PubMed  Google Scholar 

  113. Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192(9):1080–8.

    Article  PubMed  Google Scholar 

  114. Ducharme-Crevier L, Du Pont-Thibodeau G, Emeriaud G. Interest of monitoring diaphragmatic electrical activity in the pediatric intensive care unit. Crit Care Res Pract. 2013;2013:384210.

    PubMed  PubMed Central  Google Scholar 

  115. Liu L, Liu H, Yang Y, Huang Y, Liu S, Beck J, et al. Neuroventilatory efficiency and extubation readiness in critically ill patients. Crit Care. 2012;16(4):R143.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ducharme-Crevier L, Beck J, Essouri S, Jouvet P, Emeriaud G. Neurally adjusted ventilatory assist (NAVA) allows patient-ventilator synchrony during pediatric noninvasive ventilation: a crossover physiological study. Crit Care. 2015;19:44.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Baudin F, Pouyau R, Cour-Andlauer F, Berthiller J, Robert D, Javouhey E. Neurally adjusted ventilator assist (NAVA) reduces asynchrony during non-invasive ventilation for severe bronchiolitis. Pediatr Pulmonol. 2015;50(12):1320–7.

    Article  PubMed  Google Scholar 

  118. Skalsky AJ, Lesser DJ, McDonald CM. Evaluation of phrenic nerve and diaphragm function with peripheral nerve stimulation and M-mode ultrasonography in potential pediatric phrenic nerve or diaphragm pacing candidates. Phys Med Rehabil Clin N Am. 2015;26(1):133–43.

    Article  PubMed  Google Scholar 

  119. Rafferty GF, Greenough A, Manczur T, Polkey MI, Harris ML, Heaton ND, et al. Magnetic phrenic nerve stimulation to assess diaphragm function in children following liver transplantation. Pediatr Crit Care Med. 2001;2(2):122–6.

    Article  PubMed  Google Scholar 

  120. Russell RI, Helps BA, Elliot MJ, Helms PJ. Phrenic nerve stimulation at the bedside in children; equipment and validation. Eur Respir J. 1993;6(9):1332–5.

    CAS  PubMed  Google Scholar 

  121. Garrido H, Mazaira J, Gutierrez P, Gonzalez E, Rivas J, Madrazo J. Continuous respiratory support in quadriplegic children by bilateral phrenic nerve stimulation. Thorax. 1987;42(8):573–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Kawaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kawaguchi, A., Jouvet, P. (2020). Imaging and Monitoring in Pediatric Acute Respiratory Distress Syndrome. In: Shein, S., Rotta, A. (eds) Pediatric Acute Respiratory Distress Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-030-21840-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21840-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21839-3

  • Online ISBN: 978-3-030-21840-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics