Skip to main content

Microbial Production of Nanoparticles: Mechanisms and Applications

  • Chapter
  • First Online:
Microbial Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

The use of nanotechnology is part of modern everyday life, ranging from the biomedical to the agriculture sectors. Nanoparticles have multifarious applications and can be synthesized by various physico-chemical and biological methods. Bioprocessing of nanoparticle production through biological methods offers great advantages over other methods. Microbial production of nanoparticles is the most sought-after technology employed in the current era.

This chapter discusses the role of microorganism-mediated biogenic synthesis of nanoparticles. Application of computational techniques to understand the role of capping agents binding to microbial nanoparticles is discussed. The feasibility of scaling -up study with respect to fungal gold nanoparticles is particularly discussed to envision the scope in an industry setting. Various applications of microbial nanoparticles, including antimicrobial, specific delivery (bioactives, drugs), and sensing are also critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: A novel tool for a green biotechnology? In: Fungal Nanobionics (ed. Prasad R, Kumar V, Kumar M, and Shanquan W), Springer Nature Singapore Pte Ltd. 61–87

    Google Scholar 

  • Akhlaghi SP, Peng B, Yao Z, Tam KC (2013) Sustainable nano materials derived from polysaccharides and amphiphilic compounds. Soft Matter 9(33):7905–7918

    Article  CAS  Google Scholar 

  • Amarante AM, Oliveira GS, Bueno CC, Cunha RA, Lerich JCM, Freitas LCG, Franca EF, Oliveira ON Jr, Leite FL (2014) Modeling the coverage of an AFM tip by enzymes and its application in nanobiosensors. J Mol Graph Model 53:100–104

    Article  CAS  PubMed  Google Scholar 

  • Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf B Biointerfaces 103:283–287

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart: 689419. https://doi.org/10.1155/2014/689419

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Frontiers in Chemistry 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Bankier C, Cheong Y, Mahalingam S, Edirisinghe M, Ren G, Cloutman-Green E, Ciric L (2018) A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells. PLoS One 13(2):e0192093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barabadi H, Ovais M, Shinwari ZK, Saravanan M (2017) Anti-cancer green bionanomaterials: present status and future prospects. Green Chem Lett Rev 10:285–314

    Article  CAS  Google Scholar 

  • Baskar G, Garrick BG, Lalitha K, Chamundeeswari M (2018) Gold nanoparticle mediated delivery of fungal asparaginase against cancer cells. J Drug Delivery Sci Technol 44:498–504

    Article  CAS  Google Scholar 

  • Bhambure R, Bule M, Shaligram N, Kamat M, Singhal R (2009) Extracellular biosynthesis of gold nanoparticles using Aspergillus niger-its characterization and stability. Chem Eng Technol 32:1036–1041

    Article  CAS  Google Scholar 

  • Bosio VE, German A, Yanina N, Martinez ND, Guillermo R (2016) Nanodevices for the immobilization of therapeutic enzymes. Crit Rev Biotechnol 36(3):447–464

    CAS  PubMed  Google Scholar 

  • Buszewski B, Railean-Plugaru V, Pomastowski P, RafiÅ„ska K, Szultka-Mlynska M, Golinska P, Wypij M, Laskowski D, Dahm H (2018) Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect 51:45–54

    Article  CAS  PubMed  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83:42–48

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Tuan HY, Tien CW, Lo WH, Liang HC, Hu YC (2009) Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol Prog 25:1260–1266

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Betts JW, Kelly SM, Schaller J, Heinze T (2013) Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using amino cellulose as a combined reducing and capping reagents. Green Chem 15(4):989–998

    Article  CAS  Google Scholar 

  • Da Silva AC, Deda DK, Bueno CC, Moraes AS, Da Roz AL, Yamaji FM, Prado RA, Viviani V, Oliveira ON Jr, Leite FL (2014) Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy. J Nanosci Nanotechnol 14(9):6678–6684

    Article  PubMed  CAS  Google Scholar 

  • Daraee H, Eatemadi A, Abbasi E, Fekri AS, Kouhi M, Akbarzadeh A (2016) Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 44:410–422

    Article  CAS  PubMed  Google Scholar 

  • Das N (2010) Recovery of precious metals through biosorption–a review. Hydrometallurgy 103:180–189

    Article  CAS  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Dickinson C, Laffir F, Brougham DF, Marsili E (2012a) Synthesis, characterisation and catalytic activity of gold nanoparticles, biosynthesised with Rhizopus oryzae protein extract. Green Chem 14:1322–1344

    Article  CAS  Google Scholar 

  • Das SK, Liang J, Schmidt M, Laffir F, Marsili E (2012b) Biomineralization mechanism of gold by zygomycete fungi Rhizopus oryzae. ACS Nano 6:6165–6173

    Article  CAS  PubMed  Google Scholar 

  • Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S, Das S, Dey SK, Das D, Roy S (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10(6):862–876

    Article  CAS  Google Scholar 

  • Devi R, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst 137:754–759

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekar NN, Rahul GR, Narayanan KB, Raman G, Sakthivel N (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol 25(7):1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Du L, Xian L, Feng JX (2011) Rapid extra-intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanopart Res 13:921–930

    Article  CAS  Google Scholar 

  • Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44(16):5778–5792

    Article  CAS  PubMed  Google Scholar 

  • Dykman LA, Khlebtsov NG (2017) Immunological properties of gold nanoparticles. Chem Sci 8:1719–1735

    Article  CAS  PubMed  Google Scholar 

  • Ebrahiminezhad A, Bagheri M, Taghizadeh SM, Berenjian A, Ghasemi Y (2016) Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci Nanosci Nanotechnol 7:015018

    Article  Google Scholar 

  • Elgorban AM, Al-Rahmah AN, Sayed SR, Hirad A, Mostafa AAF, Bahkali AH (2016) Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Equip 30:299–304

    Article  CAS  Google Scholar 

  • Epanchintseva A, Vorobjev P, Pyshnyi D, Pyshnaya I (2017) Fast and strong adsorption of native oligonucleotides on citrate quoted gold nanoparticles. Langmuir 34(1):164–172

    Article  PubMed  CAS  Google Scholar 

  • Fariq A, Khan T, Yasmin A (2017) Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed 15(4):241–248

    Article  Google Scholar 

  • Feng J, Pandey RB, Berry RJ, Farmer BL, Naik RR, Heinz H (2011) Adsorption mechanism of single amino acid and surfactant molecules to Au 111 surfaces in aqueous solution: design rules for metal binding molecules. Soft Matter 7(5):2113–2120

    Article  CAS  Google Scholar 

  • Franca EF, Leite FL, Cunha RA, Oliveira ON Jr, Freitas LCG (2011) Designing an enzyme-based nanobiosensor using molecular modeling techniques. Phys Chem Chem Phys 13:8894–8899

    Article  CAS  PubMed  Google Scholar 

  • Gan N, Yang X, Xie D, Wu Y, Wen WA (2010) Disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nanoparticles modified screen printed carbon electrode. Sensors 10:625–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 239:22–28

    Article  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Gittins DI, Bethell D, Schiffrin DJ, Nichols RJ (2000) A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408(6808):67–69

    Article  CAS  PubMed  Google Scholar 

  • Golchin K, Golchin J, Ghaderi S, Alidadiani N, Eslamkhah S, Eslamkhah M, Davaran S, Akbarzadeh A (2018) Gold nanoparticles applications: from artificial enzyme till drug delivery. Artif Cells Nanomed Biotechnol 46(2):250–254

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Bector S (2013) Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus. Anton Leeuw 103:1113–1123

    Article  CAS  Google Scholar 

  • Hainfeld JF, Smilowitz HM, O'Connor MJ, Dilmanian FA, Slatkin DN (2013) Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond) 8:1601–1609

    Article  CAS  Google Scholar 

  • Ingle AP, Gade AK, Pierrat S, Sonnichsen C, Rai MK (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:41–144

    Article  Google Scholar 

  • Jones ME, Karlowsky JA, Draghi DC, Thornsberry C, Sahm DF, Bradley JS (2004) Rates of antimicrobial resistance among common bacterial pathogens causing respiratory, blond, urine, and skin and soft tissue infections in pediatric patients. Eur J Clin Microbiol Infect Dis 23:445–455

    Article  CAS  PubMed  Google Scholar 

  • Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9(1):e84693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MM, Kalathil S, Han TH, Lee J, Cho MH (2013) Positively charged gold nanoparticles synthesized by electrochemically active biofilm-a biogenic approach. Nanosci Nanotechnol 13:6079–6085

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Kirkland BH, Keyhani NO (2011) Expression and purification of a functionally active class I fungal hydrophobin from the entomopathogenic fungus Beauveria bassiana in Escherichia coli. J Ind Microbiol Biotechnol 38:327–335

    Article  CAS  PubMed  Google Scholar 

  • Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22:1445–1451

    Article  PubMed Central  CAS  Google Scholar 

  • Kumar SK, Amutha R, Arumugam P, Berchmans S (2011) Synthesis of gold nanoparticles: an ecofriendly approach using Hansenula anomala. ACS Appl Mater Interfaces 3:1418–1425

    Article  CAS  Google Scholar 

  • Kumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Algae-mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Met 2014:692643

    Google Scholar 

  • Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10:137–142

    Article  CAS  Google Scholar 

  • Li SC, Chen JH, Cao H, Yao DS, Liu DL (2011) Amperometric biosensor for aflatoxin B1 based on aflatoxin oxidase immobilized on multiwalled carbon nanotubes. Food Control 22(1):43–49

    Article  CAS  Google Scholar 

  • Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533

    Article  CAS  Google Scholar 

  • Liu FK, Ko FH, Huang PW, Wu CH, Chu TC (2005) Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis. J Chromatogr A 1062(1):139–145

    Article  CAS  PubMed  Google Scholar 

  • Magdi HM, Bhushan B (2015) Extracellular biosynthesis and characterization of gold nanoparticles using the fungus Penicillium chrysogenum. Microsyst Technol 21(10):2279–2285

    Article  CAS  Google Scholar 

  • Maji SK, Mandal AK, Nguyen KT, Borah P, Zhao Y (2015) Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl Mater Interfaces 7(18):9807–9816

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Fujimoto Y, Markawa T (2015) Synthesis of gold nanoparticles using various amino acids. J Colloid Interface Sci 447:254–257

    Article  CAS  PubMed  Google Scholar 

  • Miranda OR, Li X, Garcia-Gonzalez L, Zhu ZJ, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 133:9650–9653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI et al (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40:3585–3588

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463

    Article  CAS  PubMed  Google Scholar 

  • Nasrabadi HT, Abbasi E, Davaran S, Kouhi M, Akbarzadeh A (2016) Bimetallic nanoparticles: preparation, properties, and biomedical applications. Artif Cells Nanomed Biotechnol 44(1):376–380

    Article  CAS  PubMed  Google Scholar 

  • Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ (2014) Nanomaterials in combating cancer: therapeutic applications and developments. Nanomedicine 10:19–34

    Article  CAS  PubMed  Google Scholar 

  • Neveen-Mohamed K (2014) Biogenic silver nanoparticles by Aspergillus terreus as a powerful nanoweapon against Aspergillus fumigates. Afr J Microbiol Res 7:5645–5651

    Article  CAS  Google Scholar 

  • Ozdemir C, Yeni F, Odaci D, Timur S (2010) Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem 119:380–385

    Article  CAS  Google Scholar 

  • Pal S, Sharma MK, Danielsson B, Willander M, Chatterjee R, Bhand S (2014) A miniaturized nanobiosensor for choline analysis. Biosens Bioelectron 54:558–564

    Article  CAS  PubMed  Google Scholar 

  • Pei X, Qu Y, Shen W, Li H, Zhang X, Li S, Zhang Z, Li X (2017) Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol. Environ Sci Pollut Res 24(27):21649–21659

    Article  CAS  Google Scholar 

  • Pelaz B, Alexiou C, Alvarez-Puebla RA, Alves F, Andrews AM, Ashraf S et al (2017) Diverse applications of nanomedicine. ACS Nano 11:2313–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Lopez B, Merkoci A (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci Techol 22:625–639

    Article  CAS  Google Scholar 

  • Periasamy AP, Umasankar Y, Chen SM (2009) Nanomaterials-acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors: a review. Sens (Basel, Switzerland) 9(6):4034–4055

    Article  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2):374–381

    Article  PubMed  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, Cham

    Book  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Shanquan W (2018a) Fungal Nanobionics: principles and applications. Singapore, Springer. https://www.springer.com/gb/book/9789811086656

  • Prasad R, Jha A, Prasad K (2018b) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0). https://www.springer.com/978-3-319-99570-0

  • Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 49(2):137–152

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Duran N (2011) Metal nanoparticles in microbiology. Springer Verlag, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_1

    Book  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rajeshkumar S (2016) Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J Genet Eng Biotechnol 14:195–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan SK, Martin M, Cloitre T, Firlej L, Gergely C (2015) Design rules for metal binding biomolecules: understanding of amino acid adsorption on platinum crystallographic facets from density functional calculations. Physiol Chem Phys 17(6):4193–4198

    CAS  Google Scholar 

  • Ramanathan M, Luckarift HR, Sarsenova A, Wild JR, Ramanculov ER, Olsen EV, Simonian AL (2009) Lysozyme-mediated formation of protein-silica nano-composites for biosensing applications. Colloids Surf B Biointerfaces 73:58–64

    Article  CAS  PubMed  Google Scholar 

  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  PubMed  Google Scholar 

  • Salamone P, Wodzinski R (1997) Production, purification and characterization of a 50-kDa extracellular metalloprotease from Serratia marcescens. Appl Microbiol Biotechnol 48:317–321

    Article  CAS  PubMed  Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shao Y, Jin Y, Dong S (2004) Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem Commun 9:1104–1105

    Article  CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242

    CAS  PubMed  Google Scholar 

  • Syed MA, Manzoor U, Shah I, Bukhari SHA (2010) Antibacterial effects of Tungsten nanoparticles on the Escherichia coli strains isolated from catheterized urinary tract infection (UTI) cases and Staphylococcus aureus. New Microbiol 33:329–335

    PubMed  Google Scholar 

  • Tao Y, Ju E, Ren J, Qu X (2015) Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater 27:1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Thakker JN, Dalwadi P, Dhandhukia PC (2013) Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnology, 2013 (515091): 5 pages.

    Google Scholar 

  • Tsuruta T (2004) Biosorption and recycling of gold using various microorganisms. J Gen Appl Microbiol 50:221–228

    Article  CAS  PubMed  Google Scholar 

  • Vago A, Szakacs G, Safran G, Horvath R, Pecz B, Lagzi I (2015) One-step green synthesis of gold nanoparticles by mesophilic filamentous fungi. Chem Phys Lett 645:1–4

    Article  CAS  Google Scholar 

  • Venkatpurwar VP, Pokharkar VB (2010) Biosynthesis of gold nanoparticles using therapeutic enzyme: in-vitro and in-vivo efficacy study. J Biomed Nanotechnol 6(6):667–674

    Article  CAS  PubMed  Google Scholar 

  • Verma ML (2017a) Fungus-mediated bioleaching of metallic nanoparticles from agro-industrial by-products. In: Prasad R (ed) Fungal nanotechnology. Springer, Cham, pp 89–102

    Chapter  Google Scholar 

  • Verma ML (2017b) Nanobiotechnology advances in enzymatic biosensors for the agri-food industry. Environ Chem Lett 15(4):555–560

    Article  CAS  Google Scholar 

  • Verma ML (2017c) Enzymatic nanobiosensors in the agricultural and food industry. In: Ranjan S, Dasgupta N, Lichfouse E (eds) Nanoscience in food and agriculture 4 (Sustainable agriculture reviews), vol 24. Springer, Cham, pp 229–245. ISBN 978-3-319-53111-3

    Chapter  Google Scholar 

  • Verma ML (2018) Critical evaluation of toxicity tests in context to engineered nanomaterials: an introductory overview. In: Kumar V, Dasgupta N, Ranjan S (eds) Nanotoxicology: toxicity evaluation, risk assessment and management. CRC Press, Boca Raton, pp 1–17

    Google Scholar 

  • Verma ML, Barrow CJ (2015) Recent advances in feedstocks and enzyme-immobilised technology for effective transesterification of lipids into biodiesel. In: Kalia V (ed) Microbial factories. Springer, pp 87–103

    Google Scholar 

  • Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilization of β-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Rajkhowa R, Barrow CJ, Wang X, Puri M (2013a) Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis. Bioresour Technol 145:302–306

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Naebe M, Barrow CJ, Puri M (2013b) Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS One 8(9):e73642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013c) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Barrow CJ, Puri M (2013d) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biofuel production. Appl Microbiol Biotechnol 97:23–39

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36(1):108–119

    Article  CAS  PubMed  Google Scholar 

  • Virkutyte J, Varma RS (2011) Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chem Sci 2(5):837–846

    Article  CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405(6787):665–668

    Article  CAS  PubMed  Google Scholar 

  • Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451–1470

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865

    Article  CAS  Google Scholar 

  • Xin Y, Yin M, Zhao L, Meng F, Luo L (2017) Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 14:228–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Ma Y, Jeong U, Xia Y (2010) Au(I): an alternative and potentially better precursor than Au(III) for the synthesis of Au nanostructures. J Mater Chem 20:2290–2301

    Article  CAS  Google Scholar 

  • Zhang X, He X, Wang K, Yang X (2011) Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J Biomed Nanotechnol 7:245–254

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Arugula MA, Wales M, Wild J, Simonian AL (2015) A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphorus pesticides. Biosens Bioelectron 67:287–295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, M.L., Sharma, S., Dhiman, K., Jana, A.K. (2019). Microbial Production of Nanoparticles: Mechanisms and Applications. In: Prasad, R. (eds) Microbial Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16383-9_7

Download citation

Publish with us

Policies and ethics