Skip to main content

Enzymatic Nanobiosensors in the Agricultural and Food Industry

  • Chapter
  • First Online:
Nanoscience in Food and Agriculture 4

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 24))

Abstract

Detection of the environmental contaminants in the agricultural and food industries is a major challenge. Indeed, the widespread contamination of food by pesticides and other pollutants has raised concerns of the public. Fast, cheap and sensitive sensors are thus needed. The technology of enzymatic nanobiosensor offers a quick and cost-effective solution to the current concerns of agri-food industry. This article reviews recent trends in enzymatic nanobiosensor technology employed in agri-food industries, in particular the design of a bioconjugation strategy. Nanobiosensors offer ultrasensitivity and quick detection time for various pesticides and food-borne contaminants. The minimal detection limit of contaminant in soil samples by an enzymatic nanobiosensor is in the range of 50 picogram per litre, while the minimal contaminant detection limit in food samples is 1.6 nanomolar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarante AM, Oliveira GS, Bueno CC, Cunha RA, Lerich JCM, Freitas LCG, Franca EF, Oliveira ON Jr, Leite FL (2014) Modeling the coverage of an AFM tip by enzymes and its application in nanobiosensors. J Mol Graph Model 53:100–104. doi:10.1016/j.jmgm.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  • Antiochia R, Lavagnini I, Magno F (2004) Amperometric mediated carbon nanotube paste biosensor for fructose determination. Anal Lett 37(8):1657–1669. doi:10.1081/AL-120037594

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–664. doi:10.1038/nnano.2009.242

    Article  CAS  PubMed  Google Scholar 

  • Bello-Gil D, Maestro B, Fonseca J, Feliu JM, Climent V, Sanz JM (2014) Specific and reversible immobilization of proteins tagged to the affinity polypeptide C-LytA on functionalized graphite electrodes. PLoS One 9(1):e87995. doi:10.1371/journal.pone.0087995

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao M, Li Z, Wang J, Ge W, Yue T, Li R, Colvin VL, Yu WW (2012) Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci Technol 27:47–56. doi:10.1016/j.tifs.2012.04.003

    Article  CAS  Google Scholar 

  • Cheng Y, Liu Y, Huang J, Xian Y, Zhang W, Zhang Z, Jin L (2008) Rapid amperometric detection of coliforms based on MWNTs/Nafion composite film modified glass carbon electrode. Talanta 75(1):167–171. doi:10.1016/j.talanta.2007.10.047

    CAS  PubMed  Google Scholar 

  • Comparelli R, Curri ML, Cozzoli PD, Striccoli M (2007) Optical biosensing based on metal and semiconductor colloidal nanocrystals. In: Kumar CSSR (ed) Nanotechnologies for the life sciences: nanomaterials for biosensors, vol 8. Verlag Chemie, Weinheim, pp 123–174. doi:10.1002/9783527610419.ntls0086

    Google Scholar 

  • Da Silva AC, Deda DK, Bueno CC, Moraes AS, Da Roz AL, Yamaji FM, Prado RA, Viviani V, Oliveira ON Jr, Leite FL (2014) Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy. J Nanosci Nanotechnol 14(9):6678–6684. doi:10.1166/jnn.2014.9360

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400. doi:10.1016/j.foodres.2015.01.005

    Article  Google Scholar 

  • Devi R, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst 137:754–759. doi:10.1039/C1AN15838D

    Article  CAS  PubMed  Google Scholar 

  • Du D, Huang X, Cai J, Zhang A (2007) Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 23(2):285–289. doi:10.1016/j.bios.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  • Franca EF, Leite FL, Cunha RA, Oliveira ON Jr, Freitas LCG (2011) Designing an enzyme-based nanobiosensor using molecular modeling techniques. Phys Chem Chem Phys 13:8894–8899. doi:10.1039/C1CP20393B

    Article  CAS  PubMed  Google Scholar 

  • Gan N, Yang X, Xie D, Wu Y, Wen WA (2010) Disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nanoparticles modified screen printed carbon electrode. Sensors 10:625–638. doi:10.3390/s100100625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Food Sci Tech (Campinas) 30(3):573–581. doi:10.1590/S0101-20612010000300002

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803. doi:10.1016/j.biotechadv.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  • Jain Y, Rana C, Goyal A, Sharma N, Verma ML, Jana AK (2010) Biosensors, types and applications. BEATS 2010. In: Proceedings of international conference on biomedical engineering and assistive Technol Jalandhar India. 2010:1–6. http:www.bmeindia.org/paper/BEATs2010_162

  • Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 17:54–58. doi:10.1002/elan.200403118

    Article  CAS  Google Scholar 

  • Kanwar SS, Verma ML (2010) Lipases. In: Encyclopedia of Industrial Biotechnology. Wiley Publishers, Hoboken, pp 1–16. doi:10.1002/9780470054581.eib387

    Google Scholar 

  • Kanwar SS, Verma ML, Maheshwari C, Chauhan S, Chimni SS, Chauhan GS (2007) Properties of poly(AAc-co-HPMA-cl-EGDMA) hydrogel-bound lipase of Pseudomonas aeruginosa MTCC-4713 and its use in synthesis of methyl acrylate. J Appl Polym Sci 104:183–191. doi:10.1002/app.25315

    Article  CAS  Google Scholar 

  • Kanwar SS, Gehlot S, Verma ML, Gupta R, Kumar Y, Chauhan GS (2008a) Synthesis of geranyl butyrate with the poly(acrylic acid-co-hydroxy propyl methacrylate-cl-ethylene glycol dimethacrylate) hydrogel immobilized lipase of Pseudomonas aeruginosa MTCC-4713. J Appl Polym Sci 110:2681–2692. doi:10.1002/app.28241

    Article  CAS  Google Scholar 

  • Kanwar SS, Sharma C, Verma ML, Chauhan S, Chimni SS, Chauhan GS (2008b) Short-chain ester synthesis by transesterification employing poly (MAc-co-DMA-cl-MBAm) hydrogel-bound lipase of Bacillus coagulans MTCC-6375. J Appl Polym Sci 109:1063–1071. doi:10.1002/app.25320

    Article  CAS  Google Scholar 

  • Ko S, Grant SA (2006) A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosens Bioelectron 21:1283–1290. doi:10.1016/j.bios.2005.05.017

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Jana AK, Maiti M, Dhamija I (2014) Carbodiimide-mediated immobilization of serratiopeptidase on amino-, carboxyl-functionalized magnetic nanoparticles and characterization for target delivery. J Nanopart Res 16:2233. doi:10.1007/s11051-013-2233-x

    Article  Google Scholar 

  • Ley C, Holtmann D, Mangold KM, Schrader J (2011) Immobilization of histidine-tagged proteins on electrodes. Colloids Surf B: Biointerfaces 88:539–551. doi:10.1016/j.colsurfb.2011.07.044

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhou Y, Zheng Z, Yue X, Dai Z, Liu S, Tang Z (2009) Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 25(11):6580–6586. doi:10.1021/la900066z

    Article  CAS  PubMed  Google Scholar 

  • Li SC, Chen JH, Cao H, Yao DS, Liu DL (2011) Amperometric biosensor for aflatoxin B1 based on aflatoxin oxidase immobilized on multiwalled carbon nanotubes. Food Control 22(1):43–49. doi:10.1016/j.foodcont.2010.05.005

    Article  CAS  Google Scholar 

  • Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843. doi:10.1021/ac051559q

    Article  CAS  PubMed  Google Scholar 

  • Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500. doi:10.1016/j.biotechadv.2008.05.007

    Article  CAS  PubMed  Google Scholar 

  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym Microb Technol 40:1451–1463. doi:10.1016/j.enzmictec.2007.01.018

    Article  CAS  Google Scholar 

  • Miranda OR, Li X, Garcia-Gonzalez L, Zhu ZJ, Yan B, Bunz UHF, Rotello VM (2011) Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor. J Am Chem Soc 133:9650–9653. doi:10.1021/ja2021729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadiminti PP, Dong YD, Sayer C, Hay P, Rookes JE, Boyd BJ, Cahill DM (2013) Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals. ACS Appl Mater Interfaces 5(5):1818–1826. doi:10.1021/am303208t

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir C, Yeni F, Odaci D, Timur S (2010) Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem 119:380–385. doi:10.1016/j.foodchem.2009.05.087

    Article  CAS  Google Scholar 

  • Pal S, Sharma MK, Danielsson B, Willander M, Chatterjee R, Bhand S (2014) A miniaturized nanobiosensor for choline analysis. Biosens Bioelectron 54:558–564. doi:10.1016/j.bios.2013.11.057

    Article  CAS  PubMed  Google Scholar 

  • Pavlidis IV, Patila M, Bornscheuer UT, Gournis D, Stamatis H (2014) Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotechnol 32(6):312–320. doi:10.1016/j.tibtech.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  • Perez-Lopez B, Merkoci A (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci Technol 22:625–639. doi:10.1016/j.tifs.2011.04.001

    Article  CAS  Google Scholar 

  • Periasamy AP, Umasankar Y, Chen SM (2009) Nanomaterials-acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors: a review. Sensors (Basel, Switzerland) 9(6):4034–4055. doi:10.3390/s90604034

    Article  CAS  Google Scholar 

  • Prakash-Deo R, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M, Scholz F, Chen W, Lin Y (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530:185–189. doi:10.1016/j.aca.2004.09.072

    Article  Google Scholar 

  • Puri M, Barrow CJ, Verma ML (2013) Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol 31:215–216. doi:10.1016/j.tibtech.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  • Putzbach W, Ronkainenen NJ (2013) Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review. Sensors 13(4):4811–4840. doi:10.3390/s130404811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanathan M, Luckarift HR, Sarsenova A, Wild JR, Ramanculov ER, Olsen EV, Simonian AL (2009) Lysozyme-mediated formation of protein-silica nano-composites for biosensing applications. Colloids Surf B: Biointerfaces 73:58–64. doi:10.1016/j.colsurfb.2009.04.024

    Article  CAS  PubMed  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:2464. doi:10.1007/s11051-014-2464-5

    Article  Google Scholar 

  • Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511. doi:10.1016/j.biotechadv.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53. doi:10.2147/NSA.S39406

    Article  PubMed  PubMed Central  Google Scholar 

  • Serna-Cock L, Zetty-Arenas AM, Ayala-Aponte A (2009) Use of enzymatic biosensors as quality indices: a synopsis of present and future trends in the food industry. Chilean J Agr Res 69(2):270–280. doi:10.4067/S0718-58392009000200017

    Google Scholar 

  • Sharma TK, Ramanathan R, Rakwal R, Agrawal GK, Bansal V (2015) Moving forward in plant food safety and security through NanoBioSensors: adopt or adapt biomedical technologies? Proteomics 15(10):1680–1692. doi:10.1002/pmic.201400503

    Article  CAS  PubMed  Google Scholar 

  • Simpson-Stroot JM, Kearns EA, Stroot PG, Magana S, Lim DV (2008) Monitoring biosensor capture efficiencies: development of a model using GFP-expressing Escherichia coli O157:H7. J Microbiol Methods 72(1):29–37. doi:10.1016/j.mimet.2007.11.004

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Srivatava G, Talat M, Raghubanshi H, Srivastava ON, Kayastha AM (2014) Cicer α-galactosidase immobilization onto functionalized grapheme nanosheets using response surface methods and its applications. Food Chem 142:430–438. doi:10.1016/j.foodchem.2013.07.079

    Article  CAS  PubMed  Google Scholar 

  • Tothill IE (2001) Biosensors developments and potential applications in the agricultural diagnosis sector. Comput Electron Agric 30:205–218. doi:10.1016/S0168-1699(00)00165-4

    Article  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22(12):2848–2853. doi:10.1016/j.bios.2006.11.024

    Article  CAS  PubMed  Google Scholar 

  • Verma ML (2009) Studies on lipase of Bacillus cereus MTCC-8372 and its application for synthesis of esters. PhD thesis, HP University, Shimla. http:www.hpuniv.nic.in/pdf/NAAC/BIO-TECHProfile.pdf

  • Verma ML, Barrow CJ (2015) Recent advances in feedstocks and enzyme immobilised technology for effective transesterification of lipids into biodiesel. In: Kalia VC (ed) Microbial factories, 1st edn. Springer India Publisher, New Delhi, pp 87–103. doi:10.1007/978-81-322-2598-0_6

    Chapter  Google Scholar 

  • Verma ML, Kanwar SS (2008) Properties and application of Poly (Mac-co-DMA-cl-MBAm) hydrogel immobilized Bacillus cereus MTCC 8372 lipase for synthesis of geranyl acetate. J Appl Polym Sci 110:837–846. doi:10.1002/app.28539

    Article  CAS  Google Scholar 

  • Verma ML, Kanwar SS (2010) Purification and characterization of a low molecular mass alkaliphilic lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung 57:187–201. doi:10.1556/Amicr.57.2010.3.4

    Article  Google Scholar 

  • Verma ML, Kanwar SS (2012) Harnessing the potential of thermophiles: the variants of extremophiles. Dyn Biochem Process Biotechnol Mol Biol 6(1):28–39. http://www.globalsciencebooks.info/Online/GSBOnline/images/2012/DBPBMB_6%28SI1%29/DBPBMB_6%28SI1%2928-39o.pdf

  • Verma ML, Azmi W, Kanwar SS (2008a) Microbial lipases: at the interface of aqueous and non-aqueous media-a review. Acta Microbiol Immunol Hung 55:265–293. doi:10.1556/Amicr.55.2008.3.1

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Chauhan GS, Kanwar SS (2008b) Enzymatic synthesis of isopropyl myristate using immobilized lipase from Bacillus cereus MTCC-8372. Acta Microbiol Immunol Hung 55:327–342. doi:10.1556/Amicr.55.2008.3.4

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Azmi W, Kanwar SS (2009) Synthesis of ethyl acetate employing celite-immobilized lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung 56:229–242. doi:10.1556/Amicr.56.2009.3.3

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Kanwar SS, Jana AK (2010). Bacterial biosensors for measuring availability of environmental pollutants. In: BEATS 2010 Proceedings of 2010 international conference on biomedical engineering and assistive Technol Jalandhar India. 2010:1–7. http:www.bmeindia.org/paper/BEATs2010_149

  • Verma ML, Azmi W, Kanwar SS (2011) Enzymatic synthesis of isopropyl acetate catalysed by immobilized Bacillus cereus lipase in organic medium. Enzyme Res 2011:7. doi:10.4061/2011/919386

    Article  Google Scholar 

  • Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilization of β-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437. doi:10.1016/j.ijbiomac.2011.12.029

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Barrow CJ, Puri M (2013a) Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilisation with potential applications in biofuel production. Appl Microbiol Biotechnol 97:23–39. doi:10.1007/s00253-012-4535-9

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013b) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6. doi:10.1016/j.biortech.2013.01.047

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Naebe M, Barrow CJ, Puri M (2013c) Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS One 8(9):e73642. doi:10.1371/journal.pone.0073642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma ML, Rajkhowa R, Barrow CJ, Wang X, Puri M (2013d) Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis. Bioresour Technol 145:302–306. doi:10.1016/j.biortech.2013.01.065

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36:108–119. doi:10.3109/07388551.2014.928811

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Asiri AM, Liu D, Du D, Lin Y (2014) Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends Anal Chem 54:1–10. doi:10.1016/j.trac.2013.10.007

    Article  Google Scholar 

  • Zhang Y, Arugula MA, Wales M, Wild J, Simonian AL (2015) A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphorus pesticides. Biosens Bioelectron 67:287–295. doi:10.1016/j.bios.2014.08.036

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZW, Chen XJ, Tay BK, Chen JS, Han ZJ, Khor KA (2007) A novel amperometric biosensor based on ZnO: Co nanoclusters for biosensing glucose. Biosens Bioelectron 23:135–139. doi:10.1016/j.bios.2007.03.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author would like to thank Director, Centre for Chemistry and Biotechnology for providing necessary facility to carry out this work at Deakin University, Australia. The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madan L. Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Verma, M.L. (2017). Enzymatic Nanobiosensors in the Agricultural and Food Industry. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 4. Sustainable Agriculture Reviews, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-53112-0_7

Download citation

Publish with us

Policies and ethics