Skip to main content
Log in

Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Green chemistry is a boon for the development of safe, stable and ecofriendly nanostructures using biological tools. The present study was carried out to explore the potential of selected fungal strains for biosynthesis of intra- and extracellular gold nanostructures. Out of the seven cultures, two fungal strains (SBS-3 and SBS-7) were selected on the basis of development of dark pink colour in cell free supernatant and fungal beads, respectively indicative of extra- and intracellular gold nanoparticles production. Both biomass associated and cell free gold nanoparticles were characterized using X-ray diffractogram (XRD) analysis and transmission electron microscopy (TEM). XRD analysis confirmed crystalline, face-centered cubic lattice of metallic gold nanoparticles along with average crystallite size. A marginal difference in average crystallite size of extracellular (17.76 nm) and intracellular (26 and 22 nm) Au-nanostructures was observed using Scherrer equation. In TEM, a variety of shapes (triangles, spherical, hexagonal) were observed in both extra- and intracellular nanoparticles. 18S rRNA gene sequence analysis by multiple sequence alignment (BLAST) indicated 99 % homology of SBS-3 to Aspergillus fumigatus with 99 % alignment coverage and 98 % homology of SBS-7 to Aspergillus flavus with 98 % alignment coverage respectively. Native-PAGE and activity staining further confirmed enzyme linked synthesis of gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by novel alkalotolerant actinomycetes, Rhodococcus sp. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671

    Article  PubMed  CAS  Google Scholar 

  • Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanoparticle Res 6:377–382

    Article  CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92

    Article  PubMed  CAS  Google Scholar 

  • Basavaraja SS, Balaji SD, Lagashetty AK, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mat Res Bull 43:1164–1170

    Article  CAS  Google Scholar 

  • Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London

    Book  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  PubMed  CAS  Google Scholar 

  • Cullity BD (1978) Elements of X-ray diffraction. Addison Wesley, Massachusetts, p 102

    Google Scholar 

  • Deplanche K, Macaskie LE (2008) Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165–1170

    Article  CAS  Google Scholar 

  • Du L, Xian L, Feng J (2011) Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp. J Nanoparticle Res 13:921–930

    Article  CAS  Google Scholar 

  • Gupta S, Devi S, Singh K (2011) Biosynthesis and characterization of Au-nanostructures by metal tolerant fungi. J Basic Microbiol 51:601–606

    Article  PubMed  CAS  Google Scholar 

  • Harisha S (2007) Isolation of fungal DNA. In Biotechnology procedures and experiments Handbook. Infinity Science Press, Massachusetts, New Delhi, India, p 427

  • He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24:476–480

    Article  PubMed  CAS  Google Scholar 

  • Husseiny MI, Ei-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67:1003–1006

    Article  CAS  Google Scholar 

  • Kalimuthu K, Deepak V, Pandian SRK, Gurunathan S (2009) Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresour Technol 100:5356–5358

    Article  Google Scholar 

  • Mata YN, Torres E, Blázquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618

    Article  PubMed  CAS  Google Scholar 

  • Mohamed RM, Abo-Amer AE (2012) Isolation and characterization of heavy metal resistant microbes from roadside soil and phylloplane. J Basic Microbiol 52:53–65

    Article  PubMed  CAS  Google Scholar 

  • Mohanpuria P, Rana N, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanoparticle Res 10:507–517

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp and surface trapping of gold nanoparticles formed. Ang Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology 19:103–110

    Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Choudhury S, Tewari R, Tyagi AK, Kale SP (2012) Synthesis of uniform gold nanoparticles using non-pathogenic bio-control agent: evolution of morphology from nano-spheres to triangular nanoprisms. J Colloid Interface Sci 367:148–152

    Article  PubMed  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    Article  PubMed  CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au-, Ag- and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A 73:374–381

    Article  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  PubMed  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au- and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9:1–6

    Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    Article  PubMed  CAS  Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57:97–101

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Gupta N, Goswami VM, Gupta R (2006) A simple activity staining protocol for lipases and esterases. Appl Microbiol Biotechnol 70:679–682

    Article  PubMed  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco

    Google Scholar 

  • Suh IK, Ohta H, Waseda Y (1988) High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction locality: synthetic sample: at T = 293 K. J Mater Sci 23:757–760

    Article  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Bector, S. Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus . Antonie van Leeuwenhoek 103, 1113–1123 (2013). https://doi.org/10.1007/s10482-013-9892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-9892-6

Keywords

Navigation