Skip to main content

Fungus-Mediated Bioleaching of Metallic Nanoparticles from Agro-industrial By-Products

  • Chapter
  • First Online:
Fungal Nanotechnology

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Nanotechnology is a multidisciplinary area that involves the synthesis of advanced material at the nanoscale level. Nowadays applications of the nanomaterial are widely accepted and being observed in all the areas ranging from health to environment sectors. Hence there is a surge of nanotechnology for production of nanomaterial at the large scale without compromising the eco-hazardous concerns of the chemical synthesis routes of nanoparticles. The chapter describes the advances and applications of the fungi in bioleaching of waste materials ranging from fly ash to agro-industrial by-products for the production of metallic nanomaterial with reference to silica nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of ferrite nanoparticles immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Adil SF, Assal ME, Khan M (2015) Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans 44:9709–9717

    Article  CAS  PubMed  Google Scholar 

  • Asuncion MZ, Hasegawa I, Kampf JW, Laine RM (2005) The selective dissolution of rice hull ash to form [OSiO1.5]8[R4N]8 (R=Me,CH2CH2OH) octasilicates. Basic nanobuilding blocks and possible models of intermediates formed during biosilicification processes. J Mater Chem 15:2114–2121

    Article  CAS  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Bajaj M, Schmidt S, Winter J (2012) Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of North-East Punjab, India. Microb Cell Factories 11(0):64

    Article  CAS  Google Scholar 

  • Bansal V, Sanyal A, Rautaray D, Ahmad A, Sastry M (2005) Bioleaching of sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv Mater 17:889–892

    Article  CAS  Google Scholar 

  • Bansal V, Ahmad A, Sastry M (2006) Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. J Am Chem Soc 128:14059–14066

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Syed A, Bhargava SK, Ahmad A, Sastry M (2007) Zirconia enrichment in zircon sand by selective fungus mediated bioleaching of silica. Langmuir 23:4993–4998

    Article  CAS  PubMed  Google Scholar 

  • Bansal V, Bharde A, Ramanathan R, Bhargava SK (2012) Inorganic materials using unusual microorganisms. Adv Colloid Interf Sci 179–182:150–168

    Article  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nano-silica from medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  PubMed  Google Scholar 

  • Behfarnia K, Rostami M (2017) Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Constr Build Mater 131:205–213

    Article  CAS  Google Scholar 

  • Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204

    Article  CAS  PubMed  Google Scholar 

  • Bosshard PP, Bachofen R, Brandl H (1996) Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30:3066–3070

    Article  CAS  Google Scholar 

  • Brombacher C, Bachofen R, Brandl H (1997) Biohydrometallurgical processing of solids: a patent review. Appl Microbiol Biotechnol 48:577–587

    Article  CAS  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  PubMed  Google Scholar 

  • Cha JN, Stucky GD, Morse DE, Deming TJ (2002) Biomimetic synthesis of ordered silica structures mediated by block polypeptides. Nature 403:289–292

    Article  Google Scholar 

  • Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Factories 9:52–52

    Article  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticles biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73

    Article  CAS  PubMed  Google Scholar 

  • Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chem Geol 218:41–50

    Article  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL, DeSouza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8

    Article  Google Scholar 

  • Durán N, Marcato PD, Durán M, Yadav A, Gade A, Rai M (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptide, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609–1624

    Article  PubMed  Google Scholar 

  • Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227

    Article  CAS  PubMed  Google Scholar 

  • FAO World Rice Information (1995) issue No. 1. FAO, Rome

    Google Scholar 

  • FAOSTAT Database FAO (2012) Rome, www.faostat.fao.org

  • Farrell NO, Houlton A, Horrocks BR (2006) Silicon nanoparticles: applications in cell biology and medicine. Int J Nanomedicine 1(4):451–472

    Article  Google Scholar 

  • Frances IH, Denisse VA, Meghan EG (2008) High temperature aerogels in the Al2O3- SiO2 system. American chemical society 236th national meeting, Philadelphia

    Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32(5):593–600

    Article  CAS  PubMed  Google Scholar 

  • Gao M, MaQ LQ, Chang J, Ma H (2017) A novel approach to extract SiO2 from fly ash and its considerable adsorption properties. Mater Des 116:666–675

    Article  CAS  Google Scholar 

  • Hemalatha T, Ramaswamy A (2017) A review on fly ash characteristics–towards promoting high volume utilization in developing sustainable concrete. J Clean Prod 147:546–559

    Article  Google Scholar 

  • Hubert DHW, Jung M, Fredrik PM, Bomans PHH, Meuldijk J, German AL (2000) Vesicle-directed growth of silica. Adv Mater 12:1286–1290

    Article  CAS  Google Scholar 

  • Innocenzi P, Falcaro P, Grosso D, Babonneau F (2003) Order-disorder transitions and evolution of silica structure in self-assembled mesostructured silica films studied through FTIR spectroscopy. J Phys Chem B 107:4711–4717

    Article  CAS  Google Scholar 

  • Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Uddin I, Moeez S, Ahmad A (2014) Bioleaching of waste material such as fly-ash as a means of producing extracellular protein capped fluorescent and water soluble silica nanoparticles. PLoS One 9(9):e107597

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol 8:904–917

    Article  CAS  PubMed  Google Scholar 

  • Kroger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  PubMed  Google Scholar 

  • Kulkarni S, Syed A, Singh S, Gaikwad A, Patil K, Vijayamohanan K, Ahmad A, Ogale S (2008) Silicate nanoparticles by bioleaching of glass and modification of the glass surface. J Non-Cryst Solids 354:3433–3437

    Article  CAS  Google Scholar 

  • Lee JC, Song HT, Yoo JM (2007) Present status of the recycling of waste electrical and electronic equipment in Korea. Resour Conserv Recycl 50(4):380–397

    Article  Google Scholar 

  • Li G, He D, Qian Y et al (2012) Fungus mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    Article  CAS  PubMed  Google Scholar 

  • Maliszewska I, Juraszek A, Bielska K (2014) Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004

    Article  CAS  Google Scholar 

  • Mann S (1995) Biomineralization and biomimetic materials chemistry. J Mater Chem 5:935–946

    Article  CAS  Google Scholar 

  • Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318

    Article  CAS  Google Scholar 

  • Martin JL (1938) The desilicification of rice hulls and a study of the products obtained. M.S. Thesis, Louisiana State University, Eunice

    Google Scholar 

  • Mizutani S, Yoshida T, Sakai S, Tatatsuki H (1996) Release of metals from MSW 1 fly ash and availability in alkali condition. Waste Manag 16:53–544

    Article  Google Scholar 

  • Mohammadian A, Shaojaosadati SA, Rezee MH (2007) Fusarium oxysporum mediates photo-generation of silver nanoparticles. Sci Iran 14:323–326

    CAS  Google Scholar 

  • Morse DE (1999) Silicon biotechnology: harnessing biological silica production to construct new materials. Trends Biotechnol 17:230–232

    Article  CAS  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3(5):461–463

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN, Kamali M (2003) Bioleaching of copper and other metals from low-grade oxidized mining ores by Aspergillus niger. J Chem Technol Biotechnol 78(5):497–503

    Article  CAS  Google Scholar 

  • Palla R, Karade SR, Mishra G, Sharma U, Singh LP (2017) High strength sustainable concrete using silica nanoparticles. Constr Build Mater 138:285–295

    Article  CAS  Google Scholar 

  • Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes a cement for the future. Cem Concr Res 29:1323–1329

    Article  CAS  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomedicine Nanotechnol 5:5

    Article  Google Scholar 

  • Park YJ, Fray DJ (2009) Recovery of high purity precious metals from printed circuit boards. J Hazard Mater 164(2):1152–1158

    Article  CAS  PubMed  Google Scholar 

  • Pathak A, Morrison L, Healy MG (2017) Catalytic potential of selected metal ions for bioleaching, and potential techo-economic and environmental issues: a critical review. Bioresour Technol 229:211–221

    Article  CAS  PubMed  Google Scholar 

  • Patwardhan SV (2011) Biomimetic and bioinspired silica: recent developments and applications. Chem Commun 47:7567–7582

    Article  CAS  Google Scholar 

  • Paull R, Wolfe J, Hébert P, Sinkula M (2003) Investing in nanotechnology. Nat Biotechnol 21:1144–1147

    Article  CAS  PubMed  Google Scholar 

  • Pavani KV, Kumar NS, Sangameswaran BB (2012) Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol 61:61–63

    CAS  PubMed  Google Scholar 

  • Pavesi L, Negro LD, Nazzoleni C, Franzo G, Priolo P (2000) Optical gain in silicon nanocrystals. Nature 408:440–444

    Article  CAS  PubMed  Google Scholar 

  • Perry CC, Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in structure control. J Biol Inorg Chem 5(5):537–550

    Article  CAS  PubMed  Google Scholar 

  • Perry CC, Keeling-Tucker T (2003) Model studies of colloidal silica precipitation using biosilica extracts from Equisetum telmateia. Colloid Polym Sci 281(7):652–664

    Article  CAS  Google Scholar 

  • Pohnert G (2002) Biomineralization in diatoms mediated through peptide- and polyamine-assisted condensation of silica. Angew Chem Int Ed Eng 41(17):3167–3169

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 11:963955–963961

    Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomedicine Nanobiotechnol 8:316–330

    Article  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017a) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, UK, pp 53–70

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017b) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Priya A, Hait S (2017). Feasibility of bioleaching of selected metals from electronic waste by Acidiphilium acidophilum. Waste Biomass Valor pp 1–7

    Google Scholar 

  • Puri M, Barrow CJ, Verma ML (2013) Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol 31:215–216

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Bridge P, Gade A (2009) Myconanotechnology: a new and emerging science. In: Rai MK, Bridge PD (eds) Applied mycology. CAB International, New York, pp 258–267

    Chapter  Google Scholar 

  • Roy S, Mukherjee T, Chakraborty S, Das TK (2013) Biosynthesis, characterization and antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Dig J Nanomater Biostruct 8:197–205

    Google Scholar 

  • Saha M (2016) An overview of rice diseases in India. Everyman’s Sci 3:183–191

    Google Scholar 

  • Sakamoto M, Fujistuka M, Majima T (2009) Light as a construction tool of metal nanoparticles: synthesis and mechanism. J Photochem Photobiol C: Photochem Rev 10(1):33–56

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Shelar GB, Chavan AM (2014) Fungus–mediated biosynthesis of silver nanoparticles and its antibacterial activity. Arch App Sci Res 6:111–114

    CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverstein RM (1967) Spectrometric identification of organic compounds, 2nd edn. Wiley, New York, p 102

    Google Scholar 

  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 408021:8

    Google Scholar 

  • Sklivaniti V, Tsakiridis PE, Katsiotis NS, Velissariou D, Pistofidis N, Papageorgiou D, Beazi M (2017) Valorisation of woody biomass bottom ash in Portland cement: a characterization and hydration study. J Environ Chem Eng 5(1):205–213

    Article  CAS  Google Scholar 

  • Sumper M, Kroger N (2004) Silica formation in diatoms: the function of long-chain polyamines and silaffins. J Mater Chem 14:2059–2065

    Article  CAS  Google Scholar 

  • Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  PubMed  Google Scholar 

  • Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8(1):127–133

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262

    Article  CAS  PubMed  Google Scholar 

  • Vágó A, Szakacs G, Sáfrán G, Horvath R, Pécz B, Lagzi I (2016) One-step green synthesis of gold nanoparticles by mesophilic filamentous fungi. Chem Phys Lett 645:1–4

    Article  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by the fungus Trichoderma reesei. Insci J 1:65–79

    Article  CAS  Google Scholar 

  • Vala AK (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus aspergillus sydowii. Environ Prog Sustain Energy 34:194–197

    Article  CAS  Google Scholar 

  • Verma ML (2017) Enzymatic nanobiosensors in the agricultural and food industry. In: Ranjan S., Dasgupta N., Lichtfouse E. (eds) Nanoscience in food and agriculture 4, Sustainable agriculture reviews series, vol 24. Springer International Publishing, Cham, pp 229–245

    Google Scholar 

  • Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by endophytic fungus Aspergillus clavatus. Biomedicine 5:33–40

    CAS  Google Scholar 

  • Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilization of β-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Barrow CJ, Puri M (2013a) Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilisation with potential applications in biofuel production. Appl Microbiol Biotechnol 97:23–39

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013b) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Naebe M, Barrow CJ, Puri M (2013c) Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS One 8(9):e73642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma ML, Rajkhowa R, Barrow CJ, Wang X, Puri M (2013d) Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis. Bioresour Technol 145:302–306

    Article  CAS  PubMed  Google Scholar 

  • Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36(1):108–119

    Article  CAS  PubMed  Google Scholar 

  • Wu HY, Ting YP (2006) Metal extraction from municipal solid waste (MSW) incinerator fly ash-chemical leaching and fungal bioleaching. Enzym Microb Technol 38(6):839–847

    Article  CAS  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37(11):2099–2120

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madan L. Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, M.L. (2017). Fungus-Mediated Bioleaching of Metallic Nanoparticles from Agro-industrial By-Products. In: Prasad, R. (eds) Fungal Nanotechnology. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-68424-6_5

Download citation

Publish with us

Policies and ethics