Skip to main content

Ghrelin: A History of Its Discovery

  • Chapter
  • First Online:
Ghrelin in Health and Disease

Part of the book series: Contemporary Endocrinology ((COE,volume 10))

Abstract

Historically, in 1981, growth hormone-releasing peptides (GHRPs) initially were thought to reflect the actions of elusive GHRH but fortunately in 1982 GHRH was isolated. By 1984 GHRP-6 results revealed that the actions of GHRH and GHRP were distinguishable from each other. To appreciate GHRP and GHRH interrelationships on GH release, detailed in vitro and in vivo dose–response studies were essential. Over subsequent years GHRPs were studied by many talented basic and clinical investigators. By 1995 GHRP icv administration was found to increase food intake in conscious rats and in 1996 the GHS-1a receptor was cloned. Finally, in 1999 the GHRP/GHS natural hormone, ghrelin, was isolated, synthesized, and found to have essentially the same activity as that of GHRPs/GHSs in animals and humans. A major surprise and a reorienting finding was the primary anatomical location of ghrelin in the stomach and, in addition, strong enhancement of food intake. Over time, GH secretion has been hypothesized to be primarily regulated by the hypothalamic hypophysiotropic tripartite system of GHRH, ghrelin, and SRIF rather than the bipartite system of GHRH and SRIF. Since the isolation of ghrelin, actions of this hormone have continued to expand from the hypothalamic CNS to peripheral sites. This includes both direct and indirect actions particularly related to nutrition and metabolism as well as a cornucopia of unexpected actions. In summary, unnatural GHRP begot natural ghrelin and its receptor. This reverse pharmacology approach forecasts that variations of the unnatural to natural sequence of events likely will be more frequent, modified, expanded, and refined in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowers CY, Chang J, Momany F, et al. Effect of the enkephalins and enkephalin analogs on release of pituitary hormones in vitro. In: MacIntyre I, Szelke M, editors. Molecular endocrinology. Amsterdam: Elsevier/North-Holland Biomedical Press; 1977. p. 287–92.

    Google Scholar 

  2. Bowers CY, Momany F, Chang K, et al. Structure activity relationships of a synthetic pentapeptide that specifically releases GH in vitro. Endocrinology. 1980;106:663–7.

    Article  PubMed  CAS  Google Scholar 

  3. Bowers CY, Reynolds GA, Chang K, et al. A study on the regulation of GH release from the pituitaries of rats, in vitro. Endocrinology. 1981;108:1071–9.

    Article  PubMed  CAS  Google Scholar 

  4. Momany FA, Bowers CY, Reynolds GA, et al. Design, synthesis and biological activity of peptides which release growth hormone, in vitro. Endocrinology. 1981;108:31–9.

    Article  PubMed  CAS  Google Scholar 

  5. Momany F, Bowers CY, Reynolds GA, et al. Conformational energy studies and in vitro activity data on active GH releasing peptides. Endocrinology. 1984;114:1531–6.

    Article  PubMed  CAS  Google Scholar 

  6. Bowers CY, Momany F, Reynolds GA. In vitro and in vivo activity of a small synthetic peptide with potent GH releasing activity. San Francisco, CA: The Endocrine Society. June 15–18, 1982. p. 205.

    Google Scholar 

  7. Bowers CY, Momany F, Reynolds GA, et al. On the In vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth hormone. Endocrinology. 1984;114:1537–45.

    Article  PubMed  CAS  Google Scholar 

  8. Bowers CY, Reynolds GA, Momany F. New advances on the regulation of growth hormone (GH) secretion. Int J Neurol. 1984;18:188–205.

    PubMed  CAS  Google Scholar 

  9. Guillemin R, Brazeau P, Bohlen P, et al. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science. 1982;218:585–7.

    Article  PubMed  CAS  Google Scholar 

  10. Rivier J, Spiess J, Thorner M, et al. Characterization of a growth hormone releasing factor from a human pancreatic islet tumor. Nature. 1982;300:276–8.

    Article  PubMed  CAS  Google Scholar 

  11. Guillemin R. Growth hormone releasing factor: a brief history of its time. In: Bercu B, Walker R, editors. Growth hormone secretagogues. New York, NY: Springer-Verlag; 1996. p. 3–8.

    Chapter  Google Scholar 

  12. Thorner MO, Perryman RL, Cronin A, et al. Somatotroph hyperplasia: successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone releasing factor. J Clin Invest. 1982;70:965–76.

    Article  PubMed  CAS  Google Scholar 

  13. Thorner MO, Spiess J, Vance ML, et al. Human pancreatic growth hormone-releasing factor selectively stimulated growth-hormone secretion in man. Lancet. 1983;1:24–8.

    Article  PubMed  CAS  Google Scholar 

  14. Frohman LA, Szabo M, Berelowitz M, et al. Partial purification and characterization of a peptide with growth hormone activity from extra-pituitary tumors in patients with acromegaly. J Clin Invest. 1980;65:43–54.

    Article  PubMed  CAS  Google Scholar 

  15. Bowers CY, Reynolds GA, Hong A, et al. Studies on pituitary cyclic AMP and GH levels and the release of GH in vitro. In: Bhatnager AS, editor. The anterior pituitary gland. New York, NY: Raven Press; 1983. p. 165–76.

    Google Scholar 

  16. Brazeau P, Ling N, Esch F, et al. Somatocrinin (growth hormone releasing factor) in vitro bioactivity, Ca++ involvement, cAMP mediated action and additivity of effect with PGE2. Biochem Biophys Res Commun. 1982;109:588–94.

    Article  PubMed  CAS  Google Scholar 

  17. Bowers CY, Veeraragavan K, Sethumadhavan K. Atypical growth hormone releasing peptides. In: Bercu B, Walker R, editors. Growth hormone II basic and clinical aspects. New York, NY: Springer-Verlag; 1994. p. 203–22.

    Google Scholar 

  18. Bowers CY, Sartor AO, Reynolds GA, et al. On the actions of the growth hormone-releasing hexapeptide, GHRP. Endocrinology. 1991;128:2027–35.

    Article  PubMed  CAS  Google Scholar 

  19. Badger RM, Millard WJ, McCormick GF, et al. The effect of growth hormone (GH) releasing peptide on GH secretion in perifused pituitary cells of adult male rats. Endocrinology. 1984; 115:1432–8.

    Article  PubMed  CAS  Google Scholar 

  20. McCormick GF, Millard WJ, Badger TM, et al. Dose–response characteristics of various peptides with growth hormone releasing activity in the unanesthetized male rat. Endocrinology. 1985;117:97–105.

    Article  PubMed  CAS  Google Scholar 

  21. Sartor O, Bowers CY, Chang D. Parallel studies of HisDTrpAlaTrpDPheLysNH2 and hpGRF in rat pituitary primary cell monolayer culture. Endocrinology. 1985;116:952–7.

    Article  PubMed  CAS  Google Scholar 

  22. Sartor O, Bowers CY, Reynolds GA, et al. Variable determining the GH response of HisDTrpAlaTrpDPheLysNH2 (GHRP-6) in the rat. Endocrinology. 1985;117:1441–7.

    Article  PubMed  CAS  Google Scholar 

  23. Tannenbaum GS, Ling N. The interrelationship of growth hormone (GH)-releasing factor and somatostatin in generation of the ultradian rhythm of GH secretion. Endocrinology. 1984; 115:1952–7.

    Article  PubMed  CAS  Google Scholar 

  24. Plotsky P, Vale W. Patterns of growth hormone-releasing factor and somatostatin into the hypophyseal portal circulation of the rat. Science. 1985;230:461–3.

    Article  PubMed  CAS  Google Scholar 

  25. Brazeau PW, Vale W, Burgus R, et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973;179:77–9.

    Article  PubMed  CAS  Google Scholar 

  26. Momany FA, Bowers CY. Computer-assisted modeling of Xenobiotic growth hormone secretagogues. In: Bercu B, Walker R, editors. Growth hormone secretagogues. New York, NY: Springer-Verlag; 1996. p. 73–83.

    Chapter  Google Scholar 

  27. Sethumadhavan K, Veeraragavan K, Bowers CY. Demonstration and characterization of the specific binding of growth hormone-releasing peptide (GHRP) to rat anterior pituitary and hypothalamic membranes. Biochem Biophys Res Commun. 1991;178:31–7.

    Article  PubMed  CAS  Google Scholar 

  28. Bitar KG, Bowers CY, Coy DH. Effects of substance P/Bombesin antagonists on the release of growth hormone by GHRP and GHRH. Biochem Biophys Res Commun. 1991;180:156–61.

    Article  PubMed  CAS  Google Scholar 

  29. Veeraragavan K, Sethumadhavan K, Bowers CY. Growth hormone releasing peptide (GHRP) binding to porcine anterior pituitary and hypothalamic membranes. Life Sci. 1992;50:1149–55.

    Article  PubMed  CAS  Google Scholar 

  30. Smith RG, Cheng K, Schoen S, et al. A novel nonpeptidyl growth hormone secretagogue. Science. 1993;260:1640–3.

    Article  PubMed  CAS  Google Scholar 

  31. Patchett AA, Nargund RP, Tata JR, et al. Design and biological activities of L-163,191 (MK-0677): a potent, orally active growth hormone secretagogue. Proc Natl Acad Sci USA. 1995;92:7001–5.

    Article  PubMed  CAS  Google Scholar 

  32. Patchett AA, Wyvratt MJ. The design of peptidomimetic growth hormone secretagogues. In: Smith RG, Thorner MO, editors. Human growth hormone. Totowa, NJ: Humana Press, Inc; 2000. p. 45–67.

    Chapter  Google Scholar 

  33. Codd EE, Shi AYL, Walker RF. Bonding of a growth hormone releasing hexapeptide to specific hypothalamic and pituitary sites. Neuropharmacology. 1989;28:1139–44.

    Article  PubMed  CAS  Google Scholar 

  34. Cheng K, Chan WWS, Barreto A, et al. The synergistic effects of HisDTrpAlaTrpDPheLysNH2 on growth hormone (GH) releasing factor-stimulated GH release and intracellular adenosine 3′,5′-monophosphate accumulation in rat primary pituitary cell culture. Endocrinology. 1989; 124:2791–8.

    Article  PubMed  CAS  Google Scholar 

  35. Clark RG, Carlsson LMS, Trohnar J, et al. The effects of a growth hormone releasing peptide and growth hormone releasing factor in conscious and anesthetized rats. J Neuroendocrinol. 1989;1:249–55.

    Article  PubMed  CAS  Google Scholar 

  36. Smith RG, Pong SS, Hickey G, et al. Modulation of pulsatile GH release through a novel receptor in hypothalamus and pituitary gland. Recent Prog Horm Res. 1996;51:261–86.

    PubMed  CAS  Google Scholar 

  37. Herrington J, Hille B. Growth hormone-releasing hexapeptide elevates intracellular calcium in rat somatotropes by two mechanisms. Endocrinology. 1994;135:1100–8.

    Article  PubMed  CAS  Google Scholar 

  38. Adams EF, Lei T, Buchfelder M, et al. Protein kinase C-dependent growth hormone releasing peptides stimulate cAMP production by human pituitary somatotrophinomas expressing GSP oncogenes: evidence for cross-talk between transduction pathways. Mol Endocrinol. 1996;10:432–8.

    Article  PubMed  CAS  Google Scholar 

  39. Mau SE, Witt MR, Bjerrum OJ, et al. Growth hormone releasing hexapeptide (GHRP-6) activates the inositol (1,4,5)-triphosphate/diacylglycerol pathway in rat anterior pituitary cells. J Recept Signal Transduct Res. 1995;15:311–23.

    Article  PubMed  CAS  Google Scholar 

  40. Kraicer J, Sims SM. Ionic mechanisms governing the control of growth hormone secretion by somatostatin. In: Bercu B, Walker R, editors. Growth hormone II. New York, NY: Springer Verlag; 1994. p. 17–32.

    Chapter  Google Scholar 

  41. Chihara K, Kaji H, Hayashi S, et al. Growth hormone releasing hexapeptide: basic research and clinical application. In: Bercu B, Walker R, editors. Growth hormone II. New York, NY: Springer Verlag; 1994. p. 223–30.

    Chapter  Google Scholar 

  42. Dickson SL, Leng G, Robinson ICAF. Systemic administration of growth hormone releasing peptide activates hypothalamic arcuate neurons. Neuroscience. 1993;53:303–6.

    Article  PubMed  CAS  Google Scholar 

  43. Dickson SL, Luckman SM. Induction of c-fos messenger ribonucleic acid in neuropeptide Y and growth hormone (GH)-releasing factor neurons in the rat arcuate nucleus following systemic injection of the GH secretagogue, GH-releasing peptide-6. Endocrinology. 1997;138:771–7.

    Article  PubMed  CAS  Google Scholar 

  44. Dickson SL, Leng G, Dyball REJ, et al. Central actions of peptide and non-peptide growth hormone secretagogues in the rat. Neuroendocrinology. 1995;61:36–43.

    Article  PubMed  CAS  Google Scholar 

  45. Dickson SL, Doutrelant-Viltart O, Leng G. Growth hormone (GH) deficient dw/dw rats and lit/lit mice show increased Fos expression in the hypothalamic arcuate nucleus following systemic injection of GH-releasing peptide (GHRP-6). J Endocrinol. 1995;146:519–26.

    Article  PubMed  CAS  Google Scholar 

  46. Kamegai J, Hasegawa O, Minami S, et al. The growth hormone releasing peptide KP-102 induces c-fos expression in the arcuate nucleus. Mol Brain Res. 1996;39:153–9.

    Article  PubMed  CAS  Google Scholar 

  47. Chan YY, Steiner RA, Clifton DK. Regulation of hypothalamic neuropeptide-Y neurons by growth hormone in the rat. Endocrinology. 1996;137:1319–25.

    Article  PubMed  CAS  Google Scholar 

  48. Howard AD, Scott D, Feighner SD, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273:974–7.

    Article  PubMed  CAS  Google Scholar 

  49. Locke W, Kirgis HD, Bowers CY, et al. Effects of intracerebroventricular injection of a growth hormone releasing peptide on feeding behavior and plasma growth hormone levels of rats. Life Sci. 1995;56:1347–52.

    Article  PubMed  CAS  Google Scholar 

  50. Okada K, Ishii S, Minami S, et al. Intracerebroventricular administration of the growth hormone releasing peptide KP-102 increases food intake in free-feeding rats. Endocrinology. 1996;137:5155–8.

    Article  PubMed  CAS  Google Scholar 

  51. Fairhall KM, Mynett A, Thomas GB, et al. Central and peripheral effects of peptide and nonpeptide GH secretagogues on GH release in vivo. In: Bercu B, Walker R, editors. Growth hormone secretagogues. New York, NY: Springer-Verlag; 1996. p. 219–36.

    Chapter  Google Scholar 

  52. Evans BE, Rittle KE, Bock MG, et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem. 1988;31:2235–46.

    Article  PubMed  CAS  Google Scholar 

  53. Bowers CY. GH releasing peptides (GHRPs). In: Kostyo JL, Goodman HM, editors. Handbook of physiology. New York, NY: Oxford University Press; 1999. p. 267–97.

    Google Scholar 

  54. Pong SS, Chaung LYP, Dean DC, et al. Identification of a new G-protein-linked receptor for growth hormone secretagogues. Mol Endocrinol. 1996;10:57–61.

    Article  PubMed  CAS  Google Scholar 

  55. Smith RG, Van Der Ploeg LHT, Howard AD, et al. Peptodomimetic regulation of growth hormone secretion. Endocr Rev. 1997;18:621–45.

    Article  PubMed  CAS  Google Scholar 

  56. Van der Ploeg LHT, Howard AD, Smith RG, et al. Molecular cloning and characterization of human, swine, and rat growth hormone secretagogue receptors. In: Bercu BB, Walker RF, editors. Growth hormone secretagogues. New York, NY: Marcel Dekker, Inc; 1998. p. 57–76.

    Google Scholar 

  57. Feighner SD, Howard AD, Prendergast K, et al. Structural requirements for the activation of the human growth hormone secretagogue receptor by peptide and nonpeptide secretagogues. Mol Endocrinol. 1998;12:137–45.

    Article  PubMed  CAS  Google Scholar 

  58. Gnanapavan B, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab. 2002;87:2988–91.

    Article  PubMed  CAS  Google Scholar 

  59. Holst B, Cygankiewicz A, Halkjaer T, et al. High constitutive signaling of the ghrelin receptor: identification of a potent inverse agonist. Mol Endocrinol. 2003;17:2201–10.

    Article  PubMed  CAS  Google Scholar 

  60. Tannenbaum GS, Khoja ZJ, Chang JK, et al. Inhibition of food intake, body weight and GH release via a putative ghrelin O-acyltransferase (GOAT) inhibitor. The Endocrine Society 92nd annual meeting. San Diego, CA. June 19–22, 2010.

    Google Scholar 

  61. Holst B, Schwartz TW. Ghrelin receptor mutations-too little height and too much hunger. J Clin Invest. 2006;116:637–41.

    Article  PubMed  CAS  Google Scholar 

  62. Bowers CY, Laferrere B, Hurley DL, et al. The role of growth hormone secretagogues and ghrelin in feeding and body composition. In: Donohoue PA, editor. Energy metabolism and obesity. Totowa, NJ: Humana Press, Inc; 2008. p. 125–54.

    Chapter  Google Scholar 

  63. Zigman JM, Jones JE, Lee CE, et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 2006;494:528–48.

    Article  PubMed  CAS  Google Scholar 

  64. Petersen PS, Woldbye DPD, Madsen AN, et al. In vivo characterization of high basal signaling from the ghrelin receptor. Endocrinology. 2009;150:4920–30.

    Article  PubMed  CAS  Google Scholar 

  65. Korbonits M. Tumours and humors. In: Kleinberg DL, Clemmons DR, editors. Central and peripheral mechanisms in pituitary disease. Bristol: BioScientifica Ltd; 2002. p. 245–62.

    Google Scholar 

  66. Tannenbaum GS, Bowers CY. Interaction of growth hormone secretagogues and growth hormone releasing hormone/somatostatin. Endocrine. 2001;14:21–7.

    Article  PubMed  CAS  Google Scholar 

  67. Tannenbaum GS, Eplelbaum J, Bowers CY. Interrelationship between the novel peptide ghrelin and somatostatin/GHRH in regulation of pulsatile growth hormone secretion. Endocrinology. 2003;144:967–74.

    Article  PubMed  CAS  Google Scholar 

  68. Bowers CY, Reynolds GA, Durham D, et al. Growth hormone releasing peptide stimulates GH release in normal men and acts synergistically with GH releasing hormone. J Clin Endocrinol Metab. 1990;70:975–82.

    Article  PubMed  CAS  Google Scholar 

  69. Ilson BE, Jorkasky DK, Curnow RT, et al. Effect of a new synthetic hexapeptide to selectively stimulate growth hormone release in healthy human subjects. J Clin Endocrinol Metab. 1989;69:212–4.

    Article  PubMed  CAS  Google Scholar 

  70. Jaffe CA, Ho PJ, De-Mott-Friberg R, et al. Effects of a prolonged growth hormone (GH) releasing peptide infusion on pulsatile GH secretion in normal men. J Clin Endocrinol Metab. 1993;77:1641–7.

    Article  PubMed  CAS  Google Scholar 

  71. Huhn WC, Hartman ML, Pezzoli SS, et al. Twenty-four hour growth hormone (GH) releasing peptide (GHRP) infusion enhances pulsatile GH secretion and specificity attenuates the response to a subsequent GHRP bolus. J Clin Endocrinol Metab. 1993;76:1202–8.

    Article  PubMed  CAS  Google Scholar 

  72. Chapman IM, Hartman ML, Pezzoli SS, et al. Enhancement of pulsatile growth hormone secretion by continuous infusion of a growth hormone releasing peptide mimetic, L-692,429, in older adults-a clinical research center study. J Clin Endocrinol Metab. 1996;81:2874–80.

    Article  PubMed  CAS  Google Scholar 

  73. Pandya N, De-Mott-Friberg R, Bowers CY, et al. Growth hormone (GH) releasing peptide-6 requires endogenous hypothalamic GH-releasing hormone for maximal GH stimulation. J Clin Endocrinol Metab. 1998;83:1186–9.

    Article  PubMed  CAS  Google Scholar 

  74. Alster DK, Bowers CY, Jaffe CA, et al. The GH response to GHRP (HisDTrpAlaTrpDPheLysNH2), GHRH and TRH in acromegaly. J Clin Endocrinol Metab. 1993;77:842–5.

    Article  PubMed  CAS  Google Scholar 

  75. Bowers CY, Granda R, Mohan S, et al. Sustained elevation of pulsatile growth hormone (GH) secretion and insulin-like growth factor I (IGF-I), IGF-binding protein-3 (IGFBP-3), and IGFBP-5 concentrations during 30-day continuous subcutaneous infusion of GH-releasing peptide-2 in older men and women. J Clin Endocrinol Metab. 2004;89:2290–300.

    Article  PubMed  CAS  Google Scholar 

  76. Bowers CY, GHRP: Unatural toward the natural. In: Ghigo E, Boghen M, Casanueva FF, Dieguez C, editors. Growth hormone secretagogues: basic findings and clinical implications. Amsterdam: Elsevier Science; 1999. p. 5–18.

    Google Scholar 

  77. van der Lely AJ, Tschop M, Heiman ML, et al. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev. 2004;25:426–57.

    Article  PubMed  Google Scholar 

  78. Veldhuis JD, Roemmich JN, Richmond EJ, et al. Somatotropic and gonadotropic axes linkages in infancy, childhood, and the puberty-adult transition. Endocr Rev. 2006;27:101–40.

    Article  PubMed  CAS  Google Scholar 

  79. Korbonits M, Goldstone AP, Gueorguiev M, et al. Ghrelin-the hormone with multiple functions. Front Nueroendocrinol. 2004;25:27–68.

    Article  CAS  Google Scholar 

  80. Giustina A, Vedhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev. 1998;19:717–97.

    Article  PubMed  CAS  Google Scholar 

  81. Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  PubMed  CAS  Google Scholar 

  82. Bowers CY. Unnatural growth hormone-releasing peptide begets natural ghrelin. J Clin Endocrinol Metab. 2001;86:1464–9.

    Article  PubMed  CAS  Google Scholar 

  83. Gurd W, Parent G, Eniojukan R, et al. Interrelationship between the novel peptide ghrelin and somatostatin/GHRH in regulation of pulsatile GH secretion. The Endocrine Society 83rd annual meeting. Denver, CO. June 20–23, 2001.

    Google Scholar 

  84. Tannenbaum GS, Epelbaum J, Bowers CY. Ghrelin and the growth hormone neuroendocrine axis. In: Kordon C et al., editors. Brain somatic cross-talk and the central control of metabolism. Berlin/Heidelberg: Springer-Verlag; 2002. p. 65–80.

    Google Scholar 

  85. Hataya Y, Akamizu T, Takaya K, et al. A low dose of ghrelin stimulates growth hormone (GH) release synergistically with GH-releasing hormone in humans. J Clin Endocrinol Metab. 2001;86:4552–5.

    Article  PubMed  CAS  Google Scholar 

  86. Veldhuis JD, Reynolds GA, Iranmanesh A, et al. Twenty-four hour continuous ghrelin infusion augments physiological feed-back modes of growth hormones secretion. J Clin Endocrinol Metab. 2008;93:3597–603.

    Article  PubMed  CAS  Google Scholar 

  87. Date Y, Murakami N, Toshinai K, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002;123:1120–8.

    Article  PubMed  CAS  Google Scholar 

  88. Veldhuis JD, Bowers CY. Integrating GHS into the ghrelin system. Int J Pept. 2010;Article ID 879503:1–40.

    Article  Google Scholar 

  89. Farhy LS, Veldhuis JD. Deterministic construct of amplifying actions of ghrelin on pulsatile GH secretion. Am J Physiol Regul Integr Comp. 2005;288:R1649–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Y. Bowers M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bowers, C.Y., Reynolds, G.A., Veldhuis, J.D. (2012). Ghrelin: A History of Its Discovery. In: Smith, R., Thorner, M. (eds) Ghrelin in Health and Disease. Contemporary Endocrinology, vol 10. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-903-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-903-7_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-902-0

  • Online ISBN: 978-1-61779-903-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics