Skip to main content

The Role of Growth Hormone Secretagogues and Ghrelin in Feeding and Body Composition

  • Chapter
Energy Metabolism and Obesity

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

In 1984, when it was first demonstrated that growth hormone releasing peptide (GHRP) markedly augmented growth hormone (GH) release in several animal species and increased body weight after daily subcutaneous administration, we postulated that it reflected the activity of a new hypothalamic hypophysiotropic hormone different from growth hormone releasing hormone (GHRH). This implied that it could become valuable clinically to enhance body growth in children via an anabolic nitrogen retention action of GH. A great impetus to develop GHRP/growth hormone secretagogues (GHSs) as therapeutic agents was the cloning of the GHS receptor, GHSR-1a, and identification of the natural hormone ghrelin, which is a unique and novel physiologic regulator of both GH secretion and food intake. Metabolism requires multiple balanced hormonal and cellular actions and interactions of an inordinate complexity, and thus the primary dual action of ghrelin/GHSs on both GH secretion and food intake teleologically seem most reasonable and sound. The fundamental action of these dual effects is underscored in body growth of children and the impaired action of GH in the undernourished, and, thus, this is considered a major principle in the development of the GHSs. Importantly, GHSs and ghrelin have essentially the same actions on GH and food intake, and, when administered continuously to humans for extended time periods, both stimulate the sustained normal physiologic pulsatile secretion of GH. In spite of only small increases in serum pulsatile GH concentrations, both GHSs and ghrelin markedly enhance the increase of serum insulin-like growth factor 1 (IGF-1) and its binding proteins.

The complementary actions of GHSs as well as ghrelin in combination with GHRH again demonstrate that GHSs and ghrelin have the same actions on the GH axis and also demonstrate how ghrelin may act physiologically with GHRH especially as only low amounts of ghrelin as well as GHSs produce these effects. These data support the physiologic actions of both peptides during extended chronic continuous infusion.

The very recent discovery of the new hormone obestatin from the same gene as ghrelin as well as its receptor identification as G-protein orphan receptor 39 (GPR39) bring an outstanding dimension and focus to the role of GHSs/ghrelin in feeding and body composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abstract

  1. Veldhuis JD, Roemmich JN, Richmond EJ, et al. Endocrine control of body composition in infancy, childhood and puberty. Endocr Rev 2005;26:114–146.

    Article  PubMed  CAS  Google Scholar 

  2. Veldhuis JD, Roemmich JN, Richmond EF, Bowers CY. Somatotrophic and gonadotropic axes linkages in infancy, childhood, and the puberty-adult transition. Endocr Rev 2006;27(2):101–40.

    Article  PubMed  CAS  Google Scholar 

  3. Frystyk J. Free insulin-like growth factors-measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm IGF Res 2004;14:339–375.

    Article  CAS  Google Scholar 

  4. Bowers CY. Growth hormone-releasing peptide (GHRP). CMLS Cell Mol Life Sci 1998;54: 1316–1329.

    Article  CAS  Google Scholar 

  5. Kojima M, Hosada H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402:656–660.

    Article  PubMed  CAS  Google Scholar 

  6. Bowers CY. Unnatural growth hormone-releasing peptide begets natural ghrelin. J Clin Endocrinol Metab 2001;86:1464–1469.

    Article  PubMed  CAS  Google Scholar 

  7. Ghigo E. Ghrelin. In: Ghigo E, ed. Ghrelin. Boston, MA: Kluwer Academic Publishers; 2004:1–254.

    Google Scholar 

  8. Van der Lely AJ, Tschop M, Heiman ML, Ghigo E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 2004;25:426–457.

    Article  CAS  Google Scholar 

  9. Kobonits M, Goldstone AP, Gueorguiev M, Grossman AB. Ghrelin-a hormone with multiple functions. Neuroendocrinology 2004;25:27–68.

    Article  CAS  Google Scholar 

  10. Zhang JV, Ren PG, Avsian-Kretchmer O, Luo CW, Rauch R, Klein C, Hsueh AJW. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 2005;370:996–999.

    Article  CAS  Google Scholar 

  11. Thompson NM, Gill DAS, Davies R, Loveridge N, Houston PA, Robinson ICAF, Wells T. Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1A growth hormone secretatogue receptor. Endocrinology 2004;145:234–242.

    Article  PubMed  CAS  Google Scholar 

  12. Toshinai K, Yamaguchi H, Sun Y, et al. Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretatogue receptor. Endocrinology 2006;147(5):2306–14.

    Article  PubMed  CAS  Google Scholar 

  13. Zigman KM, Nakano Y, Coppari R, et al. Mice lacking ghrelin receptors resist the development of diet induced obesity. J Clin Invest 2005;115:3564–3572.

    Article  PubMed  CAS  Google Scholar 

  14. Wortley KE, del Rincon JP, Murray JD, Garcia J, Iida K, Thorner MO, Sleeman MW. Absence of ghrelin protects against early-onset obesity. J Clin Invest 2005;115:3573–3578.

    Article  PubMed  CAS  Google Scholar 

  15. Gelling RW, Overduin J, Morrison CD, Morton GJ, Frayo RS, Cummings DE, Schwartz MW. Effect of uncontrolled diabetes on plasma ghrelin concentrations and ghrelin-induced feeding. Endocrinology 2004;145:4575–3582.

    Article  PubMed  CAS  Google Scholar 

  16. English PJ, Ghatei MA, Malik IA, Bloom SR, Wilding JP. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab 2002;87:2984–2987.

    Article  PubMed  CAS  Google Scholar 

  17. Barazzoni R, Bosutti A, Stebel M, et al. Ghrelin regulated mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle. Am J Physio meta Endocrinol 2005;288:228–235.

    Article  CAS  Google Scholar 

  18. Lall S, Tung LYC, Ohlsson C, Jansson JO, Dickson SL. Growth hormone (GH)-independent stimulation of adipostiy by GH secretagogue. Biochem Biophys Res Commun 2001;280:132–138.

    Article  PubMed  CAS  Google Scholar 

  19. Mesotten DD, Van den Berghe G. Changes within the GH/IGF-I/IGFBP axis in critical illness. Crit Care Clin 2006;22:17–28.

    Article  PubMed  CAS  Google Scholar 

  20. Chung TT, Hinds CJ. Treatment with GH and IGF-I in Critical Illness. Crit Care Clin 2006;22:29–40.

    Article  CAS  Google Scholar 

  21. De Groot LJ. Non-thyroidal illness syndrome is a manifestation of hypothalamic-pituitary dysfunction, and in view of current evidence should be treated with appropriate replacement therapies. Crit Care Clin 2006;22:57–86.

    Article  PubMed  Google Scholar 

  22. Camina JP. Cell biology of the ghrelin receptor. J Neuroendocrinol 2006;18:65–76.

    Article  PubMed  CAS  Google Scholar 

  23. Ariyasu H, Takaya K, Iwakura H, et al. Transgenic mice overexpressing des-acyl ghrelin show small phenotype. Endocrinology 2005;146:355–364.

    Article  PubMed  CAS  Google Scholar 

  24. Bodart V, Febbraio M, Demers A, et al. CD36 mediates cardiovascular action of growth hormone-releasing peptides in the heart. Circ Res 2002;90:844–849.

    Article  PubMed  CAS  Google Scholar 

  25. Holst B, Cygankiewicz A, Jensen TH, Ankersen M, Schwartz TW. High constitutive signaling of the ghrelin receptor-identification of a potent inverse agonist. Mol Endocrinol 2003;17(11):2201–2210.

    Article  PubMed  CAS  Google Scholar 

  26. Holst B, Holliday ND, Bach A, Elling CE, Cox HM, Schwartz TW. Common structural basis for constitutive activity of the ghrelin receptor family. J Biol Chem 2004;279:53805–53817.

    Article  CAS  Google Scholar 

  27. Petersen PS, Wolsbye D, Lang M, Beck-Sickinger A, Schwartz TW, Holst B. Effect of icv infusion of the ghrelin receptor selective inverse agonist [DArg^1,DPhe^5,DTrp7,9,Leu11]-Sub P on body weight Gain in rats. Keystone Symposia Silverthorne Colorado Gut Hormone and Other Regulators of Appetite, Satiety and Energy Expenditure. March 2–7, 2006:53.

    Google Scholar 

  28. Wang H-J, Geller F, Dempfle A, et al. Ghrelin receptor gene: Identification of several sequences variants in extremely obese children and adolescents, healthy normal-weight and underweight students, and children with short normal stature. J Clin Endocrinol Metab 2004;89:157–162.

    Article  PubMed  CAS  Google Scholar 

  29. Pantel J, Legendre M, Cabrol S, Hilal L, Hajaji Y, Morisset S et al. Loss of constitutive activity of the growth hormone secretatogue receptor in familial short stature. J Clin Invest 2006;116:760–768.

    Article  PubMed  CAS  Google Scholar 

  30. Holst B, Schwartz TW. Ghrelin receptor mutations-too little height and too much hunger. J Clin Invest 2006;116:637–641.

    Article  PubMed  CAS  Google Scholar 

  31. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol 2006;494:528–548.

    Article  PubMed  CAS  Google Scholar 

  32. Bowers CY, Granda R, Mohan S, Kuipers J, Baylink D, Veldhuis JD. Sustained elevation of pulsatile growth hormone (GH) secretion and insulin-like growth factor I (IGF-I), IGF-binding protein-3 (IGFBP-3), and IGFBP-5 concentrations during 30-day continuous subcutaneous infusion of GH-releasing peptide-2 in older men and women. J Clin Endocrinol Metab 2004;89:2290–2300.

    Article  PubMed  CAS  Google Scholar 

  33. Veldhuis JD, Erickson D, Iranmanesh A, Miles JM, Bowers CY. Sex steroids control of the aging somatotropic axis. Endocrinol Metab Clin North Am 2005;34(4):877–893, viii.

    Article  PubMed  CAS  Google Scholar 

  34. Klinger B, Silbergeld A, Deghenghi R, Laron Z. Desensitization from long-term intranasal treatment with hexarelin does not interfere with the biological effects of this growth hormone-releasing peptide in short children. Eur J Endocrinol 1996;134:716–719.

    PubMed  CAS  Google Scholar 

  35. Pihoker C, Badger TM, Reynolds GA, Bowers CY. Treatment effects of intranasal growth hormone releasing peptide-2 in children with short stature. J Endocrinol 1997;155:79–86.

    Article  PubMed  CAS  Google Scholar 

  36. Mericq V, Cassorla F, Salazar T, Avila A, Iniguez G, Bowers CY, Merriam GR. Effects of eight months treatment with graded doses of a growth hormone releasing peptide in GH deficient children. J Clin Endocrinol Metab 1998;83:2355–2360.

    Article  PubMed  CAS  Google Scholar 

  37. Mericq V, Cassorla F, Bowers CY, Avila A, Gonen B, Merriam G. Changes in appetite and body weight in response to long-term oral administration of the ghrelin agonist GHRP-2 in GH deficient children. J Clin Endocrinol Metab 2003;16:981–985.

    CAS  Google Scholar 

  38. Hurley DL, Smith EP, Reynolds, GA, Veldhuis JD, Bowers CY. GH releasing peptide-1 treatment for 7 days causes a dose-dependent decrease in GH mRNA but increases GH intron-containing transcripts in rats. The Endocrine Society 86th Annual Meeting 2004, New Orleans, p. 503, The Endocrine Society Chevy Chase, Maryland.

    Google Scholar 

  39. Murthy MG, Plunkett LM, Gertz BJ, Wittreich J, Polvino WM, Clemmons DR. MK-677, an orally active growth hormone secretagogue, reverses diet induced catabolism. J Clin Endocrinol Metab 1998;83:320–325.

    Article  Google Scholar 

  40. Svensson J. Two month treatment of obese subjects with the oral growth hormone (GH) secretagogue MK-677 increases GH secretion, fat mass, and energy expenditure. J Clin Endocrinol Metab 1998;83:362–369.

    Article  PubMed  CAS  Google Scholar 

  41. Nagaya N, Moriya J, Yasumura Y, et al. Effects of ghrelin administration on left ventricular function,exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation 2004;110:3674–3679.

    Article  PubMed  CAS  Google Scholar 

  42. Nagaya N, Itoh T, Murakami S, et al. Treatment of cachexia with ghrelin in patients with COPD. Chest 2005;128:1187–1193.

    Article  PubMed  CAS  Google Scholar 

  43. Akamizu T, Shinomiya T, Irako T, Fukunaga M, Nakai Y, Nakai Y, Kangawa K. Separate measurement of plasma levels of acylated and desacyl ghrelin in healthy subjects using a new ELISA assay. J Clin Endocrinol Metab 2005;90:6–9.

    Article  PubMed  CAS  Google Scholar 

  44. Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab 2001;86:5992–5995.

    Article  PubMed  CAS  Google Scholar 

  45. Druce MR, Wren Am, Park AJ, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes (Lond) 2005;29(9):1130–1136.

    Article  CAS  Google Scholar 

  46. Laferrere B, Abraham C, Russell CD, Bowers CY. Growth hormone releasing peptide-2 (GHRP-2), like ghrelin, increases food intake in healthy men. J Clin Endocrinol Metab 2005;90:611–614.

    Article  PubMed  CAS  Google Scholar 

  47. Laferrere B, Hart AB, Bowers CY. Obese subjects respond to the stimulatory effect of the ghrelin agonist growth hormone releasing peptide-2 (GHRP-2) on food intake. Obes, (Silverspring) 2006;14(6):1056–63.

    CAS  Google Scholar 

  48. Bowers CY, Veldhuis JD, Theuma P, et al. On the pathophysiology of GH secretion in obese humans. The Endocrine Society 86th Annual Meeting 2004, New Orleans, p. 237. The Endocrine Society Chevy Chase, Maryland.

    Google Scholar 

  49. Bowers CY. New insights into the control of growth hormone secretion. In: Kleinberg DL, Clemmons DR, eds. Central and peripheral mechanisms in pituitary disease. Bristol: UK BioScientifica Ltd.; 2002:163–175.

    Google Scholar 

  50. Holst B, Kristoffer LE, Schild E, et al. GPR39 signaling is stimulated by zinc ions but not by obestatin. Endocrinology 2006;70(3):936–46.

    CAS  Google Scholar 

  51. Bresciani E, Rapetti D, Dona F, et al. Obestatin inhibits feeding but does not modulate GH and corticosterone secretion in the rat. J Endocrinol Invest 2006;29(8):16–18.

    Google Scholar 

  52. Weihong P, Tu H, Kastin AJ. Differential BBB interactions of three ingestive peptides: Obestatin, ghrelin, and adiponectin. Peptides 2006;27:911–916.

    Article  CAS  Google Scholar 

  53. Nogueiras R, Pfluger P, Tovar S, et al. Effect of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology 2006;148(1):21–6.

    Article  PubMed  CAS  Google Scholar 

  54. Zhu X, Cao Y, Voodg K, Steiner DF. On the processing of proghrelin to ghrelin. J Biol Chem 2006;281(50):38867–70.

    Article  PubMed  CAS  Google Scholar 

  55. Chanoine JP, Wong A, Barrios V. Obestatin, acylated and total ghrelin concentrations in the perinatal rat pancreas. Horm Res 2006;66:81–88.

    Article  PubMed  CAS  Google Scholar 

  56. Camina J, Campos JF, Caminos JE, Dieguez C, Casanueva FF. Obestatin-mediated proliferation of human retinal pigment epithelial cells: regulatory mechanism. J Cell Physiol 2006;211(1):1–9.

    Article  CAS  Google Scholar 

  57. Szentirmai E, Krueger JM. Obestatin alters sleep in rats. Neurosci Lett 2006;222–226.

    Google Scholar 

  58. Samson WK, White MM, Price C, Ferguson AV. Obestatin acts in brain to inhibit thirst. Am J Physiol Regul Integr Comp Physiol 2006;292(1):R637–43.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Bowers, C.Y., Laferrére, B., Hurley, D.L., Veldhuis, J.D. (2007). The Role of Growth Hormone Secretagogues and Ghrelin in Feeding and Body Composition. In: Donohoue, P.A. (eds) Energy Metabolism and Obesity. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-139-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-139-4_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-671-9

  • Online ISBN: 978-1-60327-139-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics