Skip to main content

Abstract

The centromere is a protein–DNA structure that is essential for the correct segregation of chromosomes to daughter cells. In human cells it is located at a specific region of each chromosome that is devoid of genes and characterized by heterochromatin. The underlying DNA is made up of a 171-bp tandem repeat known as alpha satellite, which is organized in a head-to-tail arrangement and spans up to several megabases in length. The centromere DNA is the foundation onto which over 100 proteins form a structure known as the kinetochore. This structure fully assembles during mitosis and is instrumental in the capture of spindle microtubules and the movement of chromosomes to opposing poles of the cell. In this chapter we describe the main cellular functions of the centromere in a healthy cell and show how errors in its normal role can contribute to human diseases such as developmental disorders, cancer, infertility and premature aging. In addition, we examine the evolution of centromere DNA and proteins in humans and primates and the emergence of new centromeres in non-satellite DNA locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANIFAD:

Associated network instability, and facial anomalies division

ALP-WDLPS:

Atypical lipomas and well-differentiated liposarcomas

AML:

Acute myeloid leukemia

ATLL:

Adult T-cell leukemia/lymphoma

CCAN:

Constitutive centromere -associated network

CENP:

Centromere protein

CGI:

CpG island

CIN:

Chromosomal instability

CLL:

Chronic lymphocytic leukemia

CPC:

Chromosome passenger complex

FISH:

Fluorescence in situ hybridization

HOR:

Higher order repeat

ICF:

Immunodeficiency, centromeric instability, and facial anomalies

MVA:

Mosaic variegated aneuploidy

PCD:

Premature centromere division

PCS:

Premature chromatid separation

ROB:

Robertsonian translocation

SAC:

Spindle assembly checkpoint

TE:

Transposable element

References

  1. Battaglia E (2003) Centromere, kinetochore, kinochore, kinetosome, kinosome, kinetomere, kinomere, kinetocentre, kinocentre: history, etymology and intepretation. Caryologia 56:1–21

    Article  Google Scholar 

  2. Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10:81–86

    Article  CAS  PubMed  Google Scholar 

  3. Vissel B, Choo KH (1992) Evolutionary relationships of multiple alpha satellite subfamilies in the centromeres of human chromosomes 13, 14, and 21. J Mol Evol 35:137–146

    Article  CAS  PubMed  Google Scholar 

  4. Choo KH, Vissel B, Nagy A, Earle E, Kalitsis P (1991) A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence. Nucleic Acids Res 19:1179–1182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci U S A 77:1627–1631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Hori T, Shang W-H, Takeuchi K, Fukagawa T (2013) The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J Cell Biol 200:45–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Westhorpe FG, Straight AF (2013) Functions of the centromere and kinetochore in chromosome segregation. Curr Opin Cell Biol 25:334–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Foley EA, Kapoor TM (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14:25–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bayani J, Selvarajah S, Maire G, Vukovic B, Al-Romaih K, Zielenska M et al (2007) Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin Cancer Biol 17:5–18

    Article  CAS  PubMed  Google Scholar 

  10. Chandhok NS, Pellman D (2009) A little CIN may cost a lot: revisiting aneuploidy and cancer. Curr Opin Genet Dev 19:74–81

    Article  CAS  PubMed  Google Scholar 

  11. Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10:478–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Manuelidis L (1978) Chromosomal localization of complex and simple repeated human DNAs. Chromosoma 66:23–32

    Article  CAS  PubMed  Google Scholar 

  13. Wevrick R, Willard HF (1989) Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc Natl Acad Sci U S A 86:9394–9398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963–1973

    Article  CAS  PubMed  Google Scholar 

  15. Okada T, Ohzeki J, Nakano M, Yoda K, Brinkley WR, Larionov V et al (2007) CENP-B controls centromere formation depending on the chromatin context. Cell 131:1287–1300

    Article  CAS  PubMed  Google Scholar 

  16. Hudson DF, Fowler KJ, Earle E, Saffery R, Kalitsis P, Trowell H et al (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J Cell Biol 141:309–319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Perez-Castro AV, Shamanski FL, Meneses JJ, Lovato TL, Vogel KG, Moyzis RK et al (1998) Centromeric protein B null mice are viable with no apparent abnormalities. Dev Biol 201:135–143

    Article  CAS  PubMed  Google Scholar 

  18. Kapoor M, Montes de Oca Luna R, Liu G, Lozano G, Cummings C, Mancini M et al (1998) The cenpB gene is not essential in mice. Chromosoma 107:570–576

    Article  CAS  PubMed  Google Scholar 

  19. Voullaire LE, Slater HR, Petrovic V, Choo KH (1993) A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52:1153–1163

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Miga KH, Newton Y, Jain M, Altemose N, Willard HF, Kent WJ (2014) Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res 24:697–707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  CAS  PubMed  Google Scholar 

  23. Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    Article  CAS  PubMed  Google Scholar 

  24. Earnshaw WC, Migeon BR (1985) Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92:290–296

    Article  CAS  PubMed  Google Scholar 

  25. Palmer DK, O’Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815

    Article  CAS  PubMed  Google Scholar 

  26. Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P et al (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A 97:1148–1153

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hoyt MA, Totis L, Roberts BT (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517

    Article  CAS  PubMed  Google Scholar 

  28. Li R, Murray AW (1991) Feedback control of mitosis in budding yeast. Cell 66:519–531

    Article  CAS  PubMed  Google Scholar 

  29. Salic A, Waters JC, Mitchison TJ (2004) Vertebrate shugoshin links sister centromere cohesion and kinetochore microtubule stability in mitosis. Cell 118:567–578

    Article  CAS  PubMed  Google Scholar 

  30. Santaguida S, Musacchio A (2009) The life and miracles of kinetochores. EMBO J 28:2511–2531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13:789–803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bandyopadhyay R, Heller A, Knox-DuBois C, McCaskill C, Berend SA, Page SL et al (2002) Parental origin and timing of de novo Robertsonian translocation formation. Am J Hum Genet 71:1456–1462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Scott SA, Cohen N, Brandt T, Warburton PE, Edelmann L (2010) Large inverted repeats within Xp11.2 are present at the breakpoints of isodicentric X chromosomes in Turner syndrome. Hum Mol Genet 19:3383–3393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lemyre E, der Kaloustian VM, Duncan AM (2001) Stable non-Robertsonian dicentric chromosomes: four new cases and a review. J Med Genet 38:76–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Dutta UR, Pidugu VK, Dalal A (2012) Molecular cytogenetic characterization of a non-Robertsonian dicentric chromosome 14;19 identified in a girl with short stature and amenorrhea. Case Rep Genet 2012:212065

    PubMed Central  PubMed  Google Scholar 

  36. Page SL, Shaffer LG (1998) Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations. Chromosome Res 6:115–122

    Article  CAS  PubMed  Google Scholar 

  37. Rivera H, Ayala-Madrigal LM, Gutiérrez-Angulo M, Vasquez AI, Ramos AL (2003) Isodicentric Y chromosomes and secondary microchromosomes. Genet Couns 14:227–231

    CAS  PubMed  Google Scholar 

  38. Page SL, Earnshaw WC, Choo KH, Shaffer LG (1995) Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X; 15) with simultaneous immunofluorescence and FISH. Hum Mol Genet 4:289–294

    Article  CAS  PubMed  Google Scholar 

  39. Sullivan BA, Willard HF (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20:227–228

    Article  CAS  PubMed  Google Scholar 

  40. Gisselsson D, Jonson T, Petersén A, Strömbeck B, Dal Cin P, Höglund M et al (2001) Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci U S A 98:12683–12688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mackinnon RN, Campbell LJ (2011) The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy. Genet Res Int 2011:643628

    PubMed Central  PubMed  Google Scholar 

  42. Saffery R, Irvine DV, Griffiths B, Kalitsis P, Wordeman L, Choo KH (2000) Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum Mol Genet 9:175–185

    Article  CAS  PubMed  Google Scholar 

  43. Irvine DV, Amor DJ, Perry J, Sirvent N, Pedeutour F, Choo KHA et al (2004) Chromosome size and origin as determinants of the level of CENP-A incorporation into human centromeres. Chromosome Res 12:805–815

    Article  CAS  PubMed  Google Scholar 

  44. Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H et al (2004) Human centromere repositioning “in progress”. Proc Natl Acad Sci U S A 101:6542–6547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Alonso A, Hasson D, Cheung F, Warburton PE (2010) A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 3:6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Bassett EA, Wood S, Salimian KJ, Ajith S, Foltz DR, Black BE (2010) Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors. J Cell Biol 190:177–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Marshall OJ, Chueh AC, Wong LH, Choo KHA (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Morrissette JD, Celle L, Owens NL, Shields CL, Zackai EH, Spinner NB (2001) Boy with bilateral retinoblastoma due to an unusual ring chromosome 13 with activation of a latent centromere. Am J Med Genet 99:21–28

    Article  CAS  PubMed  Google Scholar 

  49. Hu J, McPherson E, Surti U, Hasegawa SL, Gunawardena S, Gollin SM (2002) Tetrasomy 15q25.3 → qter resulting from an analphoid supernumerary marker chromosome in a patient with multiple anomalies and bilateral Wilms tumors. Am J Med Genet 113:82–88

    Article  CAS  PubMed  Google Scholar 

  50. Haddad V, Aboura A, Tosca L, Guediche N, Mas A-E, L’Herminé AC et al (2012) Tetrasomy 13q31.1qter due to an inverted duplicated neocentric marker chromosome in a fetus with multiple malformations. Am J Med Genet A 158A:894–900

    Article  PubMed  CAS  Google Scholar 

  51. Liu J, Jethva R, Del Vecchio MT, Hauptman JE, Pascasio JM, de Chadarévian J-P (2013) Tetrasomy 13q32.2qter due to an apparent inverted duplicated neocentric marker chromosome in an infant with hemangiomas, failure to thrive, laryngomalacia, and tethered cord. Birth Defects Res A Clin Mol Teratol 97:812–815

    Article  CAS  PubMed  Google Scholar 

  52. Burrack LS, Berman J (2012) Neocentromeres and epigenetically inherited features of centromeres. Chromosome Res 20:607–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gaskin CM, Helms CA (2004) Lipomas, lipoma variants, and well-differentiated liposarcomas (atypical lipomas): results of MRI evaluations of 126 consecutive fatty masses. AJR Am J Roentgenol 182:733–739

    Article  PubMed  Google Scholar 

  54. Italiano A, Maire G, Sirvent N, Nuin PAS, Keslair F, Foa C et al (2009) Variability of origin for the neocentromeric sequences in analphoid supernumerary marker chromosomes of well-differentiated liposarcomas. Cancer Lett 273:323–330

    Article  CAS  PubMed  Google Scholar 

  55. Zivković L, Spremo-Potparević B, Siedlak SL, Perry G, Plećaš-Solarović B, Milićević Z et al (2013) DNA damage in Alzheimer disease lymphocytes and its relation to premature centromere division. Neurodegener Dis 12:156–163

    Article  PubMed  CAS  Google Scholar 

  56. Nagaoka SI, Hassold TJ, Hunt PA (2012) Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet 13:493–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Jessberger R (2012) Age-related aneuploidy through cohesion exhaustion. EMBO Rep 13:539–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Wassmann K (2013) Sister chromatid segregation in meiosis II: deprotection through phosphorylation. Cell Cycle 12:1352–1359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Valente V, Serafim RB, de Oliveira LC, Adorni FS, Torrieri R, Tirapelli DP et al (2013) Modulation of HJURP (Holliday Junction-Recognizing Protein) levels is correlated with glioblastoma cells survival. PLoS One 8:e62200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Vardabasso C, Hasson D, Ratnakumar K, Chung C-Y, Duarte LF, Bernstein E (2014) Histone variants: emerging players in cancer biology. Cell Mol Life Sci 71:379–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Wu Q, Qian Y-M, Zhao X-L, Wang S-M, Feng X-J, Chen X-F et al (2012) Expression and prognostic significance of centromere protein A in human lung adenocarcinoma. Lung Cancer 77:407–414

    Article  PubMed  Google Scholar 

  62. Qiu J-J, Guo J-J, Lv T-J, Jin H-Y, Ding J-X, Feng W-W et al (2013) Prognostic value of centromere protein-A expression in patients with epithelial ovarian cancer. Tumour Biol 34:2971–2975

    Article  CAS  PubMed  Google Scholar 

  63. McGovern SL, Qi Y, Pusztai L, Symmans WF, Buchholz TA (2012) Centromere protein-A, an essential centromere protein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer. Breast Cancer Res 14:R72

    Article  PubMed Central  PubMed  Google Scholar 

  64. Hu Z, Huang G, Sadanandam A, Gu S, Lenburg ME, Pai M et al (2010) The expression level of HJURP has an independent prognostic impact and predicts the sensitivity to radiotherapy in breast cancer. Breast Cancer Res 12:R18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Callier P, Faivre L, Cusin V, Marle N, Thauvin-Robinet C, Sandre D et al (2005) Microcephaly is not mandatory for the diagnosis of mosaic variegated aneuploidy syndrome. Am J Med Genet A 137:204–207

    Article  CAS  PubMed  Google Scholar 

  66. Kajii T, Ikeuchi T (2004) Premature chromatid separation (PCS) vs. premature centromere division (PCD). Am J Med Genet A 126A:433–434

    Article  PubMed  Google Scholar 

  67. Hanks S, Coleman K, Reid S, Plaja A, Firth H, Fitzpatrick D et al (2004) Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nat Genet 36:1159–1161

    Article  CAS  PubMed  Google Scholar 

  68. García-Castillo H, Vásquez-Velásquez AI, Rivera H, Barros-Núñez P (2008) Clinical and genetic heterogeneity in patients with mosaic variegated aneuploidy: delineation of clinical subtypes. Am J Med Genet A 146A:1687–1695

    Article  PubMed  Google Scholar 

  69. Goh ES-Y, Li C, Horsburgh S, Kasai Y, Kolomietz E, Morel CF (2010) The Roberts syndrome/SC phocomelia spectrum--a case report of an adult with review of the literature. Am J Med Genet A 152A:472–478

    Article  PubMed  Google Scholar 

  70. Vega H, Trainer AH, Gordillo M, Crosier M, Kayserili H, Skovby F et al (2010) Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome. J Med Genet 47:30–37

    Article  CAS  PubMed  Google Scholar 

  71. Genin A, Desir J, Lambert N, Biervliet M, Van Der Aa N, Pierquin G et al (2012) Kinetochore KMN network gene CASC5 mutated in primary microcephaly. Hum Mol Genet 21:5306–5317

    Article  CAS  PubMed  Google Scholar 

  72. Mirzaa GM, Vitre B, Carpenter G, Abramowicz I, Gleeson JG, Paciorkowski AR et al (2014) Mutations in CENPE define a novel kinetochore-centromeric mechanism for microcephalic primordial dwarfism. Hum Genet 133:1023–1039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Gudimchuk N, Vitre B, Kim Y, Kiyatkin A, Cleveland DW, Ataullakhanov FI et al (2013) Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nat Cell Biol 15:1079–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Bolanos-Garcia VM, Blundell TL (2011) BUB1 and BUBR1: multifaceted kinases of the cell cycle. Trends Biochem Sci 36:141–150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Grabsch H, Takeno S, Parsons WJ, Pomjanski N, Boecking A, Gabbert HE et al (2003) Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer--association with tumour cell proliferation. J Pathol 200:16–22

    Article  CAS  PubMed  Google Scholar 

  76. Morales AG, Pezuk JA, Brassesco MS, de Oliveira JC, de Paula Queiroz RG, Machado HR et al (2013) BUB1 and BUBR1 inhibition decreases proliferation and colony formation, and enhances radiation sensitivity in pediatric glioblastoma cells. Childs Nerv Syst 29:2241–2248

    Article  PubMed  Google Scholar 

  77. Pinto M, Vieira J, Ribeiro FR, Soares MJ, Henrique R, Oliveira J et al (2008) Overexpression of the mitotic checkpoint genes BUB1 and BUBR1 is associated with genomic complexity in clear cell kidney carcinomas. Cell Oncol 30:389–395

    CAS  PubMed  Google Scholar 

  78. Halfmann R, Lindquist S (2010) Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330:629–632

    Article  CAS  PubMed  Google Scholar 

  79. Grossniklaus U, Kelly WG, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist S (2013) Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 14:228–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Qu G, Dubeau L, Narayan A, Yu MC, Ehrlich M (1999) Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutat Res 423:91–101

    Article  CAS  PubMed  Google Scholar 

  81. Weemaes CMR, van Tol MJD, Wang J, van Ostaijen-ten Dam MM, van Eggermond MCJA, Thijssen PE et al (2013) Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects. Eur J Hum Genet 21:1219–1225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Jiang YL, Rigolet M, Bourc’his D, Nigon F, Bokesoy I, Fryns JP et al (2005) DNMT3B mutations and DNA methylation defect define two types of ICF syndrome. Hum Mutat 25:56–63

    Article  CAS  PubMed  Google Scholar 

  83. Brun M-E, Lana E, Rivals I, Lefranc G, Sarda P, Claustres M et al (2011) Heterochromatic genes undergo epigenetic changes and escape silencing in immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome. PLoS One 6:e19464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Fawkner-Corbett DW, Howell L, Pizer BL, Dominici C, McDowell HP, Losty PD (2014) Wilms’ tumor--lessons and outcomes--a 25-year single center UK experience. Pediatr Hematol Oncol 31:400–408

    Article  PubMed  Google Scholar 

  85. Ehrlich M, Hopkins NE, Jiang G, Dome JS, Yu MC, Woods CB et al (2003) Satellite DNA hypomethylation in karyotyped Wilms tumors. Cancer Genet Cytogenet 141:97–105

    Article  CAS  PubMed  Google Scholar 

  86. Fabris S, Bollati V, Agnelli L, Morabito F, Motta V, Cutrona G et al (2011) Biological and clinical relevance of quantitative global methylation of repetitive DNA sequences in chronic lymphocytic leukemia. Epigenetics 6:188–194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ et al (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Eymery A, Horard B, El Atifi-Borel M, Fourel G, Berger F, Vitte A-L et al (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37:6340–6354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR et al (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103:8703–8708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Chan FL, Marshall OJ, Saffery R, Kim BW, Earle E, Choo KHA et al (2012) Active transcription and essential role of RNA polymerase II at the centromere during mitosis. Proc Natl Acad Sci U S A 109:1979–1984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Hall LE, Mitchell SE, O’Neill RJ (2012) Pericentric and centromeric transcription: a perfect balance required. Chromosome Res 20:535–546

    Article  CAS  PubMed  Google Scholar 

  92. Alkan C, Ventura M, Archidiacono N, Rocchi M, Sahinalp SC, Eichler EE (2007) Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data. PLoS Comput Biol 3:1807–1818

    CAS  PubMed  Google Scholar 

  93. Pertile MD, Graham AN, Choo KHA, Kalitsis P (2009) Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability. Genome Res 19:2202–2213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Garagna S, Redi CA, Capanna E, Andayani N, Alfano RM, Doi P et al (1993) Genome distribution, chromosomal allocation, and organization of the major and minor satellite DNAs in 11 species and subspecies of the genus Mus. Cytogenet Cell Genet 64:247–255

    Article  CAS  PubMed  Google Scholar 

  95. Griffin DK, Abruzzo MA, Millie EA, Sheean LA, Feingold E, Sherman SL et al (1995) Non-disjunction in human sperm: evidence for an effect of increasing paternal age. Hum Mol Genet 4:2227–2232

    Article  CAS  PubMed  Google Scholar 

  96. Nath J, Tucker JD, Hando JC (1995) Y chromosome aneuploidy, micronuclei, kinetochores and aging in men. Chromosoma 103:725–731

    Article  CAS  PubMed  Google Scholar 

  97. Zwick ME, Salstrom JL, Langley CH (1999) Genetic variation in rates of nondisjunction: association of two naturally occurring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster. Genetics 152:1605–1614

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Daniel A (2002) Distortion of female meiotic segregation and reduced male fertility in human Robertsonian translocations: consistent with the centromere model of co-evolving centromere DNA/centromeric histone (CENP-A). Am J Med Genet 111:450–452

    Article  PubMed  Google Scholar 

  99. Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  CAS  PubMed  Google Scholar 

  100. Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Schueler MG, Swanson W, Thomas PJ, NISC Comparative Sequencing Program, Green ED (2010) Adaptive evolution of foundation kinetochore proteins in primates. Mol Biol Evol 27:1585–1597

    Google Scholar 

  103. Bailey SL, Chang SC, Griffiths B, Graham AN, Saffery R, Earle E et al (2008) ZNF397, a new class of interphase to early prophase-specific, SCAN-zinc-finger, mammalian centromere protein. Chromosoma 117:367–380

    Article  CAS  PubMed  Google Scholar 

  104. Pardo-Manuel de Villena F, Sapienza C (2001) Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome 12:331–339

    Article  CAS  PubMed  Google Scholar 

  105. Rocchi M, Stanyon R, Archidiacono N (2009) Evolutionary new centromeres in primates. Prog Mol Subcell Biol 48:103–152

    Article  CAS  PubMed  Google Scholar 

  106. Kalitsis P, Choo KHA (2012) The evolutionary life cycle of the resilient centromere. Chromosoma 121:327–340

    Article  CAS  PubMed  Google Scholar 

  107. Miller DA, Sharma V, Mitchell AR (1988) A human-derived probe, p82H, hybridizes to the centromeres of gorilla, chimpanzee, and orangutan. Chromosoma 96:270–274

    Article  CAS  PubMed  Google Scholar 

  108. Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM et al (2011) Comparative and demographic analysis of orang-utan genomes. Nature 469:529–533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kalitsis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beh, T.T., Kalitsis, P. (2015). Centromeres in Health, Disease and Evolution. In: Felekkis, K., Voskarides, K. (eds) Genomic Elements in Health, Disease and Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3070-8_9

Download citation

Publish with us

Policies and ethics