Skip to main content
Log in

Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

We developed an aqueous spreading procedure that permits simultaneous analysis of human chromosomes by Q-banding and indirect immunofluorescence. Using this methodology and anticentromere antibodies from an autoimmune patient we compared the active and inactive centromeres of an isodicentric X chromosome. We show that a family of structurally related human centromere proteins (CENP-A, CENP-B, and CENP-C) is detectable only at the active centromere. These antigens therefore may be regarded both as morphological and functional markers for active centromeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi U, Pollard TD (1985) A simple device to render electron microscope grids and other surfaces hydrophilic (submitted)

  • Barnabei VM, Wilson TA, Johanson AJ, Wyandt HEE, Kelly T (1983) Isodicentric X chromosome in a girl with gonadal dysgenesis. South Med J 76:249–250

    Google Scholar 

  • Brown PA, Loughman WD (1980) Visible light observations on the kinetochore of the indian muntjac, Muntiacus muntjac, Z. Cytogenet Cell Genet 27:123–128

    Google Scholar 

  • Caspersson T, Lomakka G, Zech L (1971) The 24 fluorescence patterns of the human metaphase chromosomes: Distinguishing characters and variability. Hereditas 67:89–102

    Google Scholar 

  • de la Chapelle A, Stenstrand K (1974) Dicentric human X chromosomes. Hereditas 76:259–268

    Google Scholar 

  • Clarke L, Carbon J (1980) Isolation of a yeast centromere and construction of functional small circular minichromosomes. Nature 287:504–509

    Google Scholar 

  • Daniel A (1979) Single Cd band in dicentric translocations with one suppressed centromere. Hum Genet 48:85–92

    Google Scholar 

  • Daniel A, Lam-Po-Tang PRLC (1976) Structure and inheritance of some heterozygous Robertsonian translocations in man. J Med Genet 13:381–388

    Google Scholar 

  • Dewald GW (1983) Isodicentrix X chromosomes in humans: Origin, segregation behavior, and replication band patterns. In: Sandberg A (ed) Cytogenetics of the mammalian X chromosome, Part A. Basic mechanisms of X chromosome Behavior. Alan R Liss, New York, pp 405–426

    Google Scholar 

  • Dewald GW, Spurbeck JL, Gordon H (1978) Replication patterns of three isodicentric X chromosomes and an X isochromosome in human lymphocytes. Am J Med Genet 1:445–460

    Google Scholar 

  • Dewald GW, Boros SJ, Conroy MM, Dahl RJ, Spurbeck JL, Vitek HA (1979) A tdic (5; 15) (p13; p11) chromosome showing variation for constriction in the centromeric regions in a patient with the cri du chat syndrome. Cytogenet Cell Genet 24:15–26

    Google Scholar 

  • Distèche C, Hagemeijer A, Frederic J, Progneaux D (1972) An abnormal large human chromosome identified as an end-to-end fusion of two X's by combined results of the new banding techniques and microdensitometry. Clin Genet 3:388–395

    Google Scholar 

  • Earnshaw WC, Heck MMS (1985) Localization of topoisomerase II in mitotic chromosomes. J Cell Biol (in press)

  • Earnshaw WC, Laemmli UK (1983) Architecture of metaphase chromosomes and chromosome scaffolds. J Cell Biol 96:84–93

    Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    Google Scholar 

  • Earnshaw WC, Halligan N, Cooke C, Rothfield N (1984) The kinetochore is part of the metaphase chromosome scaffold. J Cell Biol 98:352–357

    Google Scholar 

  • Eiberg H, (1974) New selective Giemsa technique for human chromosomes, Cd staining. Nature 248:55

    Google Scholar 

  • Fitzgerald-Hayes M, Buhler J-M, Cooper T, Carbon J (1982) Isolation and subcloning analysis of functional centromere DNA (CEN11) from Saccharomyces cerevisiae chromosome XI. Mol Cell Biol 2:82–87

    Google Scholar 

  • Fraisse J, Laurent C, Collard N, Biemont M-C, Dutrillaux B (1975) Un deuxieme exemple du fusion telomerique de deux chromosomes X. Ann Genet 18:243–245

    Google Scholar 

  • Fritzler MJ, Kinsella TD (1980) The CREST syndrome: A distinct serologic entity with anticentromere antibodies. Am J Med 69:520–526

    Google Scholar 

  • Fryns JP, Petit P, Kleczkowska A, van den Berghe H (1983) Replication and inactivation of an isodicentric X: Presence of an inactive centromere influences the replication patterns. Clin Genet 24:180–183

    Google Scholar 

  • Guldner HH, Lakomek H-J, Bautz FA (1984) Human anticentromere sera recognize a 19.5 kd nonhistone chromosomal protein from HeLa cells. Clin Exp Immunol 58:13–20

    Google Scholar 

  • Hsu TC, Pathak S, Chen TR (1975) The possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations. Cytogenet Cell Genet 15:41–49

    Google Scholar 

  • Jabs EW, Wolf SF, Migeon BR (1984) Characterization of a cloned DNA sequence that is present at centromeres of all human autosomes and the X chromosome and shows polymorphic variation. Proc Natl Acad Sci USA 81:4884–4888

    Google Scholar 

  • Katayama KP, Roesler MR, Dungar CF, Mattingly RF (1983) Gonadoblastoma in a patient with an isodicentric X chromosome. Clin Genet 24:355–358

    Google Scholar 

  • Laca Z, Ivanovic M, Dramusic V, Moric-Petrovic S (1979) Isodicentric X chromosome in a woman with characteristics of gonadal dysgenesis. Hum Genet 49:237–241

    Google Scholar 

  • Latt SA, Willard HF, Gerald PS (1976) BrdU-33258 Hoechst analysis of DNA replication in human lymphocytes with supernumerary or structurally abnormal X chromosomes. Chromosoma 57:135–153

    Google Scholar 

  • Lin MS, Wilson MG (1983) The sequence of DNA replication in an isodicentric X chromosome in peripheral blood lymphocytes and skin fibroblasts from the same individual. Hum Genet 65:139–143

    Google Scholar 

  • Maine GT, Surosky RT, Tye B-K (1984) Isolation and characterization of the centromere from chromosome V (CEN5) of Saccharomyces cerevisiae. Mol Cell Biol 4:86–91

    Google Scholar 

  • Maraschio P, Scappaticci S, Ferreri E, Fraccaro M (1977) X chromosomes attached by their long arm: Replication autonomy of the short arm adjacent to the inactive centromere, Ann Genet 20:179–183

    Google Scholar 

  • Maraschio P, Simoni G, Terzoli GL, d'Alberton A, Crosignani PG (1980a) X chromosomes attached by their short arm: Presence of an inactive centromere influences the replication patterns. Ann Genet 23:208–212

    Google Scholar 

  • Maraschio P, Zuffardi O, Lo Curto F (1980b) Cd bands and centromeric function in dicentric chromosomes. Hum Genet 54:265–267

    Google Scholar 

  • Merry DE, Pathak S, Hsu TC, Brinkley BR (1985) Anti-kinetochore antibodies: Use as probes for inactive centromeres. Am J Hum Genet (in press)

  • Mattei JF, Taramasco H, Mattei MG, Lucas C, Aubert L, Giraud F (1977) A girl with mosaicism for a dicentric X chromosome (45,X/46,Xdic(X) (Xqter-p22:: p222-qter) Hum Genet 38:39–48

    Google Scholar 

  • Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci USA 77:1627–1631

    Google Scholar 

  • Mutchinik O, Casas L, Ruz L, Lisker R, Lozano O (1981) Symmetrical replication patterns and sex chromatin bodies formation of an idic(X) (p22.3::p22.3) chromosome. Hum Genet 57:261–264

    Google Scholar 

  • Nakagome Y, Teramura F, Kataoka K, Hosono F (1976) Mental retardation, malformation and partial 7p monosomy 45,XX, t dic(7;15)(p21;p11). Clin Genet 9:621–634

    Google Scholar 

  • Niebuhr E (1972) Dicentric and monocentric Robertsonian translocations in man. Humangenetik 16:217–226

    Google Scholar 

  • Osborn M, Weber K (1982) Immunofluorescence and immunocytochemical procedures with purified antibodies: Tubulin-containing structures. Methods Cell Biol 24:97–132

    Google Scholar 

  • Panzeri L, Philippsen P (1982) Centromeric DNA from chromosome VI in Saccharomyces cerevisiae strains. EMBO J 1:1605–1611

    Google Scholar 

  • Roberts SH, Howell RT, Laurence KM, Heathcote ME (1977) Stable dicentric autosome tdic(8∶22)(p23∶p13), in a mentally retarded girl. J Med Genet 14:66–68

    Google Scholar 

  • Robertson J, Faed MJW, Lamont MA, Crowder AM (1982) Isodicentric X chromosome in a moderately tall patient with gonadal dysgenesis: Lack of effect of functional centromere on inactivation pattern. J Med Genet 19:463–476

    Google Scholar 

  • Sarto GE, Therman E (1980) Replication and inactivation of a dicentric X formed by telomeric fusion. Am J Obstet Gynecol 136:904–911

    Google Scholar 

  • Schwartz S, Palmer CG, Weaver DD, Priest J (1983) Dicentric chromosome 13 and centromere inactivation. Hum Genet 63:332–337

    Google Scholar 

  • Sekhon GS, Monteleone P, Volk SLR, Singh H (1977) A stable dicentric chromosome due to an unusual fusion. Mamm Chrom Newslett 18:46

    Google Scholar 

  • Sillesen I, Rasmussen K, Østerballe O, Nielsen J (1976) Center for Barr body condensation. A case of Turner's syndrome with 45,X/46,X, dic(X) (Xqter-p22::p22-qter). Hum Genet 33:337–340

    Google Scholar 

  • Sinha AK, Pathak S, Nora JJ (1976) Fusion of two apparently intact human X chromosomes. Hum Genet 32:295–300

    Google Scholar 

  • Stinchcomb DT, Mann C, Davis RW (1982) Centromeric DNA from Saccharomyces cerevisiae. J Mol Biol 158:157–179

    Google Scholar 

  • Therman E, Sarto GE, Patau K (1974) Apparently isodicentric but functionally monocentric X chromosome in man. Am J Hum Genet 26:83–92

    Google Scholar 

  • Williamson DH, Fennell DJ (1975) The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol 12:335–351

    Google Scholar 

  • Yu CW, Chen H, Morrison J (1980) Kinetics of DNA replication in a dicentric X chromosome formed by long arm to long arm fusion. Hum Genet 56:71–79

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Earnshaw, W.C., Migeon, B.R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92, 290–296 (1985). https://doi.org/10.1007/BF00329812

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329812

Keywords

Navigation