Skip to main content

Evolutionary New Centromeres in Primates

  • Chapter
  • First Online:
Centromere

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 48))

Abstract

The centromere has a pivotal role in structuring chromosomal architecture, but remains a poorly understood and seemingly paradoxical “black hole.” Centromeres are a very rapidly evolving segment of the genome and it is now known that centromere shifts in evolution are not rare and must be considered on a par with other chromosome rearrangements. Recently, unprecedented findings on neocentromeres and evolutionary new centromeres (ENC) have helped clarify the relationship of the centromere within the genome and shown that these two phenomena are two faces of the same coin. No prominent sequence features are known that promote centromere formation and both types of new centromeres are formed epigenetically, both clinical neocentromeres and ENC cluster at chromosomal “hotspots.” The clustering of neocentromeres in 8p is probably the result of the relatively high frequency of noncanonical pairing. Studies on the evolution of the chromosomes 3, 13, and 15 help explain why there are clusters of neocentromeres. These domains often correspond to ancestral inactivated centromeres and some regions can preserve features that trigger neocentromere emergence over tens of millions of years. Neocentromeres may be correlated with the distribution of segmental duplications (SDs) in regions of extreme plasticity that often can be characterized as gene deserts. Further, because centromeres and associated pericentric regions are dynamically complex, centromere shifts may turbocharge genome reorganization by influencing the distribution of heterochromatin. The “reuse” of regions as centromere seeding-points in evolution and in human clinical cases further extends the concept of “reuse” of specific domains for “chromosomal events.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso A, Mahmood R, Li S, Cheung F, Yoda K, Warburton PE (2003) Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12:2711–2721

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Fritz B, Hasson D, Abrusan G, Cheung F, Yoda K, Radlwimmer B, Ladurner AG, Warburton PE (2007) Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol (www) 8:R148

    Article  Google Scholar 

  • Amor DJ, Choo KH (2002) Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714

    Article  PubMed  Google Scholar 

  • Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H, Choo KH (2004) Human centromere repositioning “in progress”. Proc Natl Acad Sci USA 101:6542–6547

    Article  PubMed  CAS  Google Scholar 

  • Armengol L, Pujana MA, Cheung J, Scherer SW, Estivill X (2003) Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements. Hum Mol Genet 12:2201–2208

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE (2004) Hotspots of mammalian chromosomal evolution. Genome Biol (www) 5:R23

    Article  Google Scholar 

  • Bukvic N, Susca F, Gentile M, Tangari E, Ianniruberto A, Guanti G (1996) An unusual dicentric Y chromosome with a functional centromere with no detectable alpha-satellite. Hum Genet 97:453–456

    Article  PubMed  CAS  Google Scholar 

  • Capozzi O, Purgato S, Verdun di Cantogno L, Grosso E, Ciccone R, Zuffardi O, Della Valle G, Rocchi M (2008) Evolutionary and clinical neocentromeres: two faces of the same coin. Chromosoma 117:339–344

    Article  PubMed  CAS  Google Scholar 

  • Capozzi O, Purgato S, D’Addabbo P, Archidiacono N, Battaglia P, Baroncini A, Capucci A, Stanyon R, Della Valle G, Rocchi M. Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago. Genome Res (in press)

    Google Scholar 

  • Carbone L, Ventura M, Tempesta S, Rocchi M, Archidiacono N (2002) Evolutionary history of chromosome 10 in primates. Chromosoma 111:267–272

    Article  PubMed  CAS  Google Scholar 

  • Carbone L, Nergadze SG, Magnani E, Misceo D, Francesca Cardone M, Roberto R, Bertoni L, Attolini C, Francesca Piras M, de Jong P, Raudsepp T, Chowdhary BP, Guerin G, Archidiacono N, Rocchi M, Giulotto E (2006) Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 87:777–782

    Article  PubMed  CAS  Google Scholar 

  • Cardone MF, Alonso A, Pazienza M, Ventura M, Montemurro G, Carbone L, de Jong PJ, Stanyon R, D’Addabbo P, Archidiacono N, She X, Eichler EE, Warburton PE, Rocchi M (2006) Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol (www) 7:R91

    Article  Google Scholar 

  • Cardone MF, Lomiento M, Teti MG, Misceo D, Roberto R, Capozzi O, D’Addabbo P, Ventura M, Rocchi M, Archidiacono N (2007) Evolutionary history of chromosome 11 featuring four distinct centromere repositioning events in Catarrhini. Genomics 90:35–43

    Article  PubMed  CAS  Google Scholar 

  • Chueh AC, Wong LH, Wong N, Choo KHx (2005) Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere. Hum Mol Genet 14:85–93

    Article  PubMed  CAS  Google Scholar 

  • Consortium ICGS (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Article  Google Scholar 

  • Eder V, Ventura M, Ianigro M, Teti M, Rocchi M, Archidiacono N (2003) Chromosome 6 phylogeny in primates and centromere repositioning. Mol Biol Evol 20:1506–1512

    Article  PubMed  CAS  Google Scholar 

  • Eichler EE (2001) Segmental duplications: what’s missing, misassigned, and misassembled-and should we care. Genome Res 11:653–656

    Article  PubMed  CAS  Google Scholar 

  • Everts-van der Wind A, Larkin DM, Green CA, Elliott JS, Olmstead CA, Chiu R, Schein JE, Marra MA, Womack JE, Lewin HA (2005) A high-resolution whole-genome cattle-human comparative map reveals details of mammalian chromosome evolution. Proc Natl Acad Sci USA 102:18526–18531

    Article  PubMed  CAS  Google Scholar 

  • Giglio S, Broman KW, Matsumoto N, Calvari V, Gimelli G, Neumann T, Ohashi H, Voullaire L, Larizza D, Giorda R, Weber JL, Ledbetter DH, Zuffardi O (2001) Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 68:874–883

    Article  PubMed  CAS  Google Scholar 

  • Green P (1997) Against a whole-genome shotgun. Genome Res 7:410–417

    PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F, Kakuma T, Hiraoka Y, Takahashi K (2008) Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321:1088–1091

    Article  PubMed  CAS  Google Scholar 

  • Kasai F, Garcia C, Arruga MV, Ferguson-Smith MA (2003) Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet Genome Res 102:326–330

    Article  PubMed  CAS  Google Scholar 

  • Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, Haugen E, Zerr T, Yamada NA, Tsang P, Newman TL, Tuzun E, Cheng Z, Ebling HM, Tusneem N, David R, Gillett W, Phelps KA, Weaver M, Saranga D, Brand A, Tao W, Gustafson E, McKernan K, Chen L, Malig M, Smith JD, Korn JM, McCarroll SA, Altshuler DA, Peiffer DA, Dorschner M, Stamatoyannopoulos J, Schwartz D, Nickerson DA, Mullikin JC, Wilson RK, Bruhn L, Olson MV, Kaul R, Smith DR, Eichler EE (2008) Mapping and sequencing of structural variation from eight human genomes. Nature 453:56–64

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Yamada F, Hashimoto T, Abe S, Matsuda Y, Kuroiwa A (2008) Centromere repositioning in the X chromosome of XO/XO mammals, Ryukyu spiny rat. Chromosome Res 16:587–593

    Article  PubMed  CAS  Google Scholar 

  • Larkin DM, Everts-van der Wind A, Rebeiz M, Schweitzer PA, Bachman S, Green C, Wright CL, Campos EJ, Benson LD, Edwards J, Liu L, Osoegawa K, Womack JE, de Jong PJ, Lewin HA (2003) A cattle–human comparative map built with cattle BAC-ends and human genome sequence. Genome Res 13:1996–1972

    Google Scholar 

  • Lo AW, Craig JM, Saffery R, Kalitsis P, Irvine DV, Earle E, Magliano DJ, Choo KH (2001a) A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J 20:2087–2096

    Article  CAS  Google Scholar 

  • Lo AW, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KH (2001b) A novel chromatin immunoprecipitation and array (cia) analysis identifies a 460-kb cenp-a-binding neocentromere DNA. Genome Res 11:448–457

    Article  CAS  Google Scholar 

  • Lomiento M, Jiang Z, D’Addabbo P, Eichler EE, Rocchi M (2008) Evolutionary-new centromeres preferentially emerge within gene deserts. Genome Biol (www) 9(12):R173

    Article  Google Scholar 

  • Marshall OJ, Chueh AC, Wong LH, Choo KH (2008) Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282

    Article  PubMed  CAS  Google Scholar 

  • Misceo D, Cardone MF, Carbone L, D’Addabbo P, de Jong PJ, Rocchi M, Archidiacono N (2005) Evolutionary history of chromosome 20. Mol Biol Evol 22:360–366

    Article  PubMed  CAS  Google Scholar 

  • Misceo D, Capozzi O, Roberto R, Dell’Oglio MP, Rocchi M, Stanyon R, Archidiacono N (2008) Tracking the complex flow of chromosome rearrangements from the Hominoidea Ancestor to extant Hylobates and Nomascus Gibbons by high-resolution synteny mapping. Genome Res 18:1530–1537

    Article  PubMed  CAS  Google Scholar 

  • Montefalcone G, Tempesta S, Rocchi M, Archidiacono N (1999) Centromere repositioning. Genome Res 9:1184–1188

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A, Bourque G, Tesler G, Auvil L, Beever JE, Chowdhary BP, Galibert F, Gatzke L, Hitte C, Meyers SN, Milan D, Ostrander EA, Pape G, Parker HG, Raudsepp T, Rogatcheva MB, Schook LB, Skow LC, Welge M, Womack JE, O’Brien SJ, Pevzner PA, Lewin HA (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309:613–617

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • O’Neill RJ, Eldridge MD, Metcalfe CJ (2004) Centromere dynamics and chromosome evolution in marsupials. J Hered 95:375–381

    Article  PubMed  Google Scholar 

  • Oakenfull EA, Clegg JB (1998) Phylogenetic relationships within the genus Equus and the evolution of alpha and theta globin genes. J Mol Evol 47:772–783

    Article  PubMed  CAS  Google Scholar 

  • Oakenfull E, Lim H, Ryder O (2000) A survey of equid mitochondrial DNA: Implications for the evolution, genetic diversity and conservation of Equus. Conservation Genet 1:341–355

    Article  CAS  Google Scholar 

  • Opazo JC, Wildman DE, Prychitko T, Johnson RM, Goodman M (2006) Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini, Primates). Mol Phylogenet Evol 40:274–280

    Article  PubMed  CAS  Google Scholar 

  • Pardo-Manuel de Villena F, Sapienza C (2001) Transmission ratio distortion in offspring of heterozygous female carriers of Robertsonian translocations. Hum Genet 108:31–36

    Article  PubMed  CAS  Google Scholar 

  • Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci USA 100:7672–7677

    Article  PubMed  CAS  Google Scholar 

  • Raaum RL, Sterner KN, Noviello CM, Stewart CB, Disotell TR (2005) Catarrhine primate divergence dates estimated from complete mitochondrial genomes: concordance with fossil and nuclear DNA evidence. J Hum Evol 48:237–257

    Article  PubMed  Google Scholar 

  • Rivera H, Vassquez AI, Ayala-Madrigal ML, Ramirez-Duenas ML, Davalos IP (1996) Alphoidless centromere of a familial unstable inverted Y chromosome. Ann Genet 39:236–239

    PubMed  CAS  Google Scholar 

  • Roberto R, Capozzi O, Wilson RK, Mardis ER, Lomiento M, Tuzun E, Cheng Z, Mootnick AR, Archidiacono N, Rocchi M, Eichler EE (2007) Molecular refinement of gibbon genome rearrangement. Genome Res 17:249–257

    Article  PubMed  CAS  Google Scholar 

  • Roberto R, Misceo D, D’Addabbo P, Archidiacono N, Rocchi M (2008) Refinement of macaque synteny arrangement with respect to the official rheMac2 macaque sequence assembly. Chromosome Res 16(7):977–985

    Article  PubMed  CAS  Google Scholar 

  • Rocchi M, Archidiacono N, Stanyon R (2006) Ancestral genomes reconstruction: An integrated, multi-disciplinary approach is needed. Genome Res 16:1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Saffery R, Sumer H, Hassan S, Wong LH, Craig JM, Todokoro K, Anderson M, Stafford A, Choo KH (2003) Transcription within a functional human centromere. Mol Cell 12:509–516

    Article  PubMed  CAS  Google Scholar 

  • She X, Horvath JE, Jiang Z, Liu G, Furey TS, Christ L, Clark R, Graves T, Gulden CL, Alkan C, Bailey JA, Sahinalp C, Rocchi M, Haussler D, Wilson RK, Miller W, Schwartz S, Eichler EE (2004) The structure and evolution of centromeric transition regions within the human genome. Nature 430:857–864

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Rocchi M, Capozzi O, Roberto R, Misceo D, Ventura M, Cardone M, Bigoni F, Archidiacono N (2008) Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosome Res 16:17–39

    Article  PubMed  CAS  Google Scholar 

  • Sumer H, Craig JM, Sibson M, Choo KH (2003) A rapid method of genomic array analysis of scaffold/matrix attachment regions (S/MARs) identifies a 2.5-Mb region of enhanced scaffold/matrix attachment at a human neocentromere. Genome Res 13:1737–1743

    Article  PubMed  CAS  Google Scholar 

  • Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, Haugen E, Hayden H, Albertson D, Pinkel D, Olson MV, Eichler EE (2005) Fine-scale structural variation of the human genome. Nat Genet 37:727–732

    Article  PubMed  CAS  Google Scholar 

  • Tyler-Smith C, Gimelli G, Giglio S, Floridia G, Pandya A, Terzoli G, Warburton PE, Earnshaw WC, Zuffardi O (1999) Transmission of a fully functional human neocentromere through three generations. Am J Hum Genet 64:1440–1444

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Archidiacono N, Rocchi M (2001) Centromere emergence in evolution. Genome Res 11:595–599

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Mudge JM, Palumbo V, Burn S, Blennow E, Pierluigi M, Giorda R, Zuffardi O, Archidiacono N, Jackson MS, Rocchi M (2003) Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13:2059–2068

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Weigl S, Carbone L, Cardone MF, Misceo D, Teti M, D’Addabbo P, Wandall A, Björck E, de Jong P, She X, Eichler EE, Archidiacono N, Rocchi M (2004) Recurrent sites for new centromere seeding. Genome Res 14:1696–1703

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Antonacci F, Cardone MF, Stanyon R, D’Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M (2007) Evolutionary formation of new centromeres in macaque. Science 316:243–246

    Article  PubMed  CAS  Google Scholar 

  • Villasante A, Abad JP, Mendez-Lago M (2007) Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc Natl Acad Sci USA 104:10542–10547

    Article  PubMed  CAS  Google Scholar 

  • Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res 12:617–626

    Article  PubMed  CAS  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Wong LH, Choo KH (2001) Centromere on the move. Genome Res 11:513–516

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The MiUR (Ministero della Universita’ e della Ricerca) support is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Rocchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rocchi, M., Stanyon, R., Archidiacono, N. (2009). Evolutionary New Centromeres in Primates. In: Ugarkovic, D. (eds) Centromere. Progress in Molecular and Subcellular Biology, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00182-6_5

Download citation

Publish with us

Policies and ethics