Skip to main content
Log in

ZNF397, a new class of interphase to early prophase-specific, SCAN-zinc-finger, mammalian centromere protein

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The centromere is a complex structure required for equal segregation of newly synthesised sister chromatids at mitosis. One of the significant objectives in centromere research is to determine the complete repertoire of protein components that constitute the kinetochore. Here, we identify a novel centromere protein using a centromere-positive autoimmune serum from a patient with watermelon stomach disease. Western blot and screening of a lambda phage expression library revealed a 60-kDa protein, ZNF397. This protein belongs to the classical Cys2His2 group of the zinc-finger protein superfamily and contains two conserved domains: a leucine-rich SCAN domain and nine Cys2His2 zinc fingers. Bioinformatic analysis shows that ZNF397 is conserved in placental mammals. Stable GFP:ZNF397-expressing human cells show co-localisation of ZNF397 with the constitutive centromere protein CENP-A during interphase and early prophase. Deletion and domain-swap constructs indicate that the SCAN domain is necessary but not sufficient for centromere localisation. Gene-knockout studies in mice using the mouse orthologue (Zfp397) reveal that ZNF397 is a non-essential protein. These properties define ZNF397 as a member of a new class of interphase to early prophase-specific and SCAN domain-containing mammalian centromere protein. The possible role of this protein in transcription at the centromere is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agata Y, Matsuda E, Shimizu A (1999) Two novel Kruppel-associated box-containing zinc-finger proteins, KRAZ1 and KRAZ2, repress transcription through functional interaction with the corepressor KAP-1 (TIF1beta/KRIP-1). J Biol Chem 274:16412–16422

    Article  PubMed  CAS  Google Scholar 

  • Amor DJ, Kalitsis P, Sumer H, Choo KHA (2004) Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14:359–368

    Article  PubMed  CAS  Google Scholar 

  • Bolivar J, Diaz I, Iglesias C, Valdivia MM (1999) Molecular cloning of a zinc finger autoantigen transiently associated with interphase nucleolus and mitotic centromeres and midbodies. Orthologous proteins with nine CXXC motifs highly conserved from nematodes to humans. J Biol Chem 274:36456–36464

    Article  PubMed  CAS  Google Scholar 

  • Bomont P, Maddox P, Shah JV, Desai AB, Cleveland DW (2005) Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP-F. EMBO J 24:3927–3939

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Guest SS, Smale ST, Hahm K, Merkenschlager M, Fisher AG (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91:845–854

    Article  PubMed  CAS  Google Scholar 

  • Choo KHA (1997) The centromere. Oxford University Press, New York

    Google Scholar 

  • Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST (2000) Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 14:2146–2160

    Article  PubMed  CAS  Google Scholar 

  • Compton DA, Yen TJ, Cleveland DW (1991) Identification of novel centromere/kinetochore-associated proteins using monoclonal antibodies generated against human mitotic chromosome scaffolds. J Cell Biol 112:1083–1097

    Article  PubMed  CAS  Google Scholar 

  • Cooke CA, Heck MM, Earnshaw WC (1987) The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J Cell Biol 105:2053–2067

    Article  PubMed  CAS  Google Scholar 

  • Coquelle FM, Caspi M, Cordelieres FP, Dompierre JP, Dujardin DL, Koifman C, Martin P, Hoogenraad CC, Akhmanova A, Galjart N, De Mey JR, Reiner O (2002) LIS1, CLIP-170’s key to the dynein/dynactin pathway. Mol Cell Biol 22:3089–3102

    Article  PubMed  CAS  Google Scholar 

  • du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KHA (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144–153

    Article  PubMed  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Sullivan KF, Machlin PS, Cooke CA, Kaiser DA, Pollard TD, Rothfield NF, Cleveland DW (1987) Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol 104:817–829

    Article  PubMed  CAS  Google Scholar 

  • Edelstein LC, Collins T (2005) The SCAN domain family of zinc finger transcription factors. Gene 359:1–17

    Article  PubMed  CAS  Google Scholar 

  • Elkayam O, Oumanski M, Yaron M, Caspi D (2000) Watermelon stomach following and preceding systemic sclerosis. Semin Arthritis Rheum 30:127–131

    Article  PubMed  CAS  Google Scholar 

  • Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW (2006) The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Hayashi T, Kiyomitsu T, Toyoda Y, Kokubu A, Obuse C, Yanagida M (2007) Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev Cell 12:17–30

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T, Pendon C, Morris J, Brown W (1999) CENP-C is necessary but not sufficient to induce formation of a functional centromere. EMBO J 18:4196–4209

    Article  PubMed  CAS  Google Scholar 

  • Fukagawa T, Mikami Y, Nishihashi A, Regnier V, Haraguchi T, Hiraoka Y, Sugata N, Todokoro K, Brown W, Ikemura T (2001) CENP-H, a constitutive centromere component, is required for centromere targeting of CENP-C in vertebrate cells. EMBO J 20:4603–4617

    Article  PubMed  CAS  Google Scholar 

  • Goshima G, Kiyomitsu T, Yoda K, Yanagida M (2003) Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol 160:25–39

    Article  PubMed  CAS  Google Scholar 

  • Gostout CJ, Viggiano TR, Ahlquist DA, Wang KK, Larson MV, Balm R (1992) The clinical and endoscopic spectrum of the watermelon stomach. J Clin Gastroenterol 15:256–263

    Article  PubMed  CAS  Google Scholar 

  • Hahm K, Cobb BS, McCarty AS, Brown KE, Klug CA, Lee R, Akashi K, Weissman IL, Fisher AG, Smale ST (1998) Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev 12:782–796

    Article  PubMed  CAS  Google Scholar 

  • Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280–291

    Article  PubMed  CAS  Google Scholar 

  • Hori T, Okada M, Maenaka K, Fukagawa T (2008) CENP-O-Class proteins form a stable complex and are required for proper kinetochore function. Mol Biol Cell 19:843–854

    Article  PubMed  CAS  Google Scholar 

  • Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KHA (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci U S A 97:1148–1153

    Article  PubMed  CAS  Google Scholar 

  • Hudson DF, Fowler KJ, Earle E, Saffery R, Kalitsis P, Trowell H, Hill J, Wreford NG, de Kretser DM, Cancilla MR, Howman E, Hii L, Cutts SM, Irvine DV, Choo KHA (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J Cell Biol 141:309–319

    Article  PubMed  CAS  Google Scholar 

  • Izuta H, Ikeno M, Suzuki N, Tomonaga T, Nozaki N, Obuse C, Kisu Y, Goshima N, Nomura F, Nomura N, Yoda K (2006) Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11:673–684

    Article  PubMed  CAS  Google Scholar 

  • Jabbari M, Cherry R, Lough JO, Daly DS, Kinnear DG, Goresky CA (1984) Gastric antral vascular ectasia: the watermelon stomach. Gastroenterology 87:1165–1170

    PubMed  CAS  Google Scholar 

  • Kalitsis P, Fowler KJ, Earle E, Hill J, Choo KHA (1998) Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. Proc Natl Acad Sci U S A 95:1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Kapoor M, Montes de Oca Luna R, Liu G, Lozano G, Cummings C, Mancini M, Ouspenski I, Brinkley BR, May GS (1998) The cenpB gene is not essential in mice. Chromosoma 107:570–576

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Goto DB, Martienssen RA, Urano T, Furukawa K, Murakami Y (2005) RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309:467–469

    Article  PubMed  CAS  Google Scholar 

  • Kline SL, Cheeseman IM, Hori T, Fukagawa T, Desai A (2006) The human Mis12 complex is required for kinetochore assembly and proper chromosome segregation. J Cell Biol 173:9–17

    Article  PubMed  CAS  Google Scholar 

  • Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    Article  PubMed  CAS  Google Scholar 

  • Liao H, Winkfein RJ, Mack G, Rattner JB, Yen TJ (1995) CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis. J Cell Biol 130:507–518

    Article  PubMed  CAS  Google Scholar 

  • Liberski SM, McGarrity TJ, Hartle RJ, Varano V, Reynolds D (1994) The watermelon stomach: long-term outcome in patients treated with Nd:YAG laser therapy. Gastrointest Endosc 40:584–587

    Article  PubMed  CAS  Google Scholar 

  • Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–370

    Article  PubMed  CAS  Google Scholar 

  • Liu ST, Hittle JC, Jablonski SA, Campbell MS, Yoda K, Yen TJ (2003) Human CENP-I specifies localization of CENP-F, MAD1 and MAD2 to kinetochores and is essential for mitosis. Nat Cell Biol 5:341–345

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Desai A, Cleveland DW (2005) Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling. J Cell Biol 170:873–880

    Article  PubMed  CAS  Google Scholar 

  • Martienssen RA (2003) Maintenance of heterochromatin by RNA interference of tandem repeats. Nat Genet 35:213–214

    Article  PubMed  CAS  Google Scholar 

  • Matsuda E, Agata Y, Sugai M, Katakai T, Gonda H, Shimizu A (2001) Targeting of Kruppel-associated box-containing zinc finger proteins to centromeric heterochromatin. Implication for the gene silencing mechanisms. J Biol Chem 276:14222–14229

    Article  PubMed  CAS  Google Scholar 

  • Meraldi P, McAinsh AD, Rheinbay E, Sorger PK (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7:R23

    Article  PubMed  CAS  Google Scholar 

  • Minoshima Y, Hori T, Okada M, Kimura H, Haraguchi T, Hiraoka Y, Bao YC, Kawashima T, Kitamura T, Fukagawa T (2005) The constitutive centromere component CENP-50 is required for recovery from spindle damage. Mol Cell Biol 25:10315–10328

    Article  PubMed  CAS  Google Scholar 

  • Mollinari C, Reynaud C, Martineau-Thuillier S, Monier S, Kieffer S, Garin J, Andreassen PR, Boulet A, Goud B, Kleman JP, Margolis RL (2003) The mammalian passenger protein TD-60 is an RCC1 family member with an essential role in prometaphase to metaphase progression. Dev Cell 5:295–307

    Article  PubMed  CAS  Google Scholar 

  • Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E, Wu P, Neben S, Georgopoulos K (1997) Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J 16:2004–2013

    Article  PubMed  CAS  Google Scholar 

  • Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci U S A 77:1627–1631

    Article  PubMed  CAS  Google Scholar 

  • Nishihashi A, Haraguchi T, Hiraoka Y, Ikemura T, Regnier V, Dodson H, Earnshaw WC, Fukagawa T (2002) CENP-I is essential for centromere function in vertebrate cells. Dev Cell 2:463–476

    Article  PubMed  CAS  Google Scholar 

  • Obuse C, Yang H, Nozaki N, Goto S, Okazaki T, Yoda K (2004) Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells 9:105–120

    Article  PubMed  CAS  Google Scholar 

  • Okada M, Cheeseman IM, Hori T, Okawa K, McLeod IX, Yates JR 3rd, Desai A, Fukagawa T (2006) The CENP-H–I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Ohzeki J, Nakano M, Yoda K, Brinkley WR, Larionov V, Masumoto H (2007) CENP-B controls centromere formation depending on the chromatin context. Cell 131:1287–1300

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Earnshaw WC, Choo KHA, Shaffer LG (1995) Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X; 15) with simultaneous immunofluorescence and FISH. Hum Mol Genet 4:289–294

    Article  PubMed  CAS  Google Scholar 

  • Palmer DK, O’Day K, Trong HL, Charbonneau H, Margolis RL (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci U S A 88:3734–3738

    Article  PubMed  CAS  Google Scholar 

  • Perez-Castro AV, Shamanski FL, Meneses JJ, Lovato TL, Vogel KG, Moyzis RK, Pedersen R (1998) Centromeric protein B null mice are viable with no apparent abnormalities. Dev Biol 201:135–143

    Article  PubMed  CAS  Google Scholar 

  • Rattner JB, Kingwell BG, Fritzler MJ (1988) Detection of distinct structural domains within the primary constriction using autoantibodies. Chromosoma 96:360–367

    Article  PubMed  CAS  Google Scholar 

  • Rattner JB, Rao A, Fritzler MJ, Valencia DW, Yen TJ (1993) CENP-F is a.ca 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization. Cell Motil Cytoskeleton 26:214–226

    Article  PubMed  CAS  Google Scholar 

  • Rebollo A, Schmitt C (2003) Ikaros, Aiolos and Helios: transcription regulators and lymphoid malignancies. Immunol Cell Biol 81:171–175

    Article  PubMed  CAS  Google Scholar 

  • Ruchaud S, Carmena M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8:798–812

    Article  PubMed  CAS  Google Scholar 

  • Ryder JA, Klotz AP, Kirsner JB (1953) Gastritis with veno capillary ectasia as a source of massive gastric haemorrhage. Gastroenterology 24:118–123

    Google Scholar 

  • Saitoh H, Tomkiel J, Cooke CA, Ratrie H 3rd, Maurer M, Rothfield NF, Earnshaw WC (1992) CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115–125

    Article  PubMed  CAS  Google Scholar 

  • Saitoh S, Takahashi K, Yanagida M (1997) Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell 90:131–143

    Article  PubMed  CAS  Google Scholar 

  • Sander TL, Stringer KF, Maki JL, Szauter P, Stone JR, Collins T (2003) The SCAN domain defines a large family of zinc finger transcription factors. Gene 310:29–38

    Article  PubMed  CAS  Google Scholar 

  • Sugata N, Munekata E, Todokoro K (1999) Characterization of a novel kinetochore protein, CENP-H. J Biol Chem 274:27343–27346

    Article  PubMed  CAS  Google Scholar 

  • Sugata N, Li S, Earnshaw WC, Yen TJ, Yoda K, Masumoto H, Munekata E, Warburton PE, Todokoro K (2000) Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere–kinetochore complexes. Hum Mol Genet 9:2919–2926

    Article  PubMed  CAS  Google Scholar 

  • Sullivan BA, Blower MD, Karpen GH (2001) Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2:584–596

    Article  PubMed  CAS  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci U S A 101:15986–15991

    Article  PubMed  CAS  Google Scholar 

  • Valdez BC, Henning D, Busch RK, Woods K, Flores-Rozas H, Hurwitz J, Perlaky L, Busch H (1996) A nucleolar RNA helicase recognized by autoimmune antibodies from a patient with watermelon stomach disease. Nucleic Acids Res 24:1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Watson M, Hally RJ, McCue PA, Varga J, Jimenez SA (1996) Gastric antral vascular ectasia (watermelon stomach) in patients with systemic sclerosis. Arthritis Rheum 39:341–346

    Article  PubMed  CAS  Google Scholar 

  • Weaver BA, Cleveland DW (2007) Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res 67:10103–10105

    Article  PubMed  CAS  Google Scholar 

  • Williams AJ, Blacklow SC, Collins T (1999) The zinc finger-associated SCAN box is a conserved oligomerization domain. Mol Cell Biol 19:8526–8535

    PubMed  CAS  Google Scholar 

  • Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E, Choo KHA (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Yu L, Bi G, Luo K, Zhou G, Zhao S (2003) Identification and characterization of two novel human SCAN domain-containing zinc finger genes ZNF396 and ZNF397. Gene 310:193–201

    Article  PubMed  CAS  Google Scholar 

  • Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DW (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10:1245–1254

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Tom Kay, St. Vincent’s Institute, Melbourne for providing the watermelon stomach disease sera and Sophie Gazeas and staff at the University of Melbourne for mouse husbandry.

This work was supported by project grant 436920 from The National Health and Medical Research Council of Australia. PK is an R.D. Wright Fellow (ID#436984), and KHAC is a Senior Principal Research Fellow (I.D. # 334300) of NHMRC.

This research has complied with the federal government guidelines and the Institutional policies on using mice in research.

Conflict of interest statement

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalitsis.

Additional information

Communicated by H. Masumoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, S.L., Chang, S.C., Griffiths, B. et al. ZNF397, a new class of interphase to early prophase-specific, SCAN-zinc-finger, mammalian centromere protein. Chromosoma 117, 367–380 (2008). https://doi.org/10.1007/s00412-008-0155-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-008-0155-7

Keywords

Navigation