Skip to main content

The Interactions of Soil Microbes, Arbuscular Mycorrhizal Fungi and N-Fixing Bacteria, Rhizobium, Under Different Conditions Including Stress

  • Chapter
  • First Online:
Use of Microbes for the Alleviation of Soil Stresses

Abstract

The interaction effects between Arbuscular mycorrhiza (AM) and soil N-fixing bacteria, specifically Rhizobia, is an important process affecting plant growth and hence ecosystem productivity. The symbioses processes between AM fungi and bacteria with the host plant are controlled by some common genes. There is also a very specific tripartite interaction among the host plant, AM fungi, and soil Rhizobia. The genetic exchange between the bacteria interacting with the fungi and with the host plant is also an important aspect affecting the interactions between Rhizobium and mycorrhizal fungi and hence the processes of symbiosis. Such kind of interactions is important from different points of view including the production of inoculums and handling plants under stress. Some other important conclusions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, Rhizobia and Frankia bacteria. Plant Sig Behav 7:636–641

    Google Scholar 

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbiosis and parasitic weeds in plant roots. Ann Bot 97:925–931

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    Article  CAS  Google Scholar 

  • Antunes PM, de Varennes A, Rajcan I, Goss MJ (2006a) Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biol Biochem 38:1234–1242

    Article  CAS  Google Scholar 

  • Antunes PM, Rajcan I, Goss MJ (2006b) Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max (L) Merr.). Soil Biol Biochem 38:533–543

    Article  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum spp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Badri D, Weir T, van der Lelie D, Vivanco J (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  PubMed  CAS  Google Scholar 

  • Baird LM, Caruso KJ (1994) Development of root nodules in Phaseolus vulgaris inoculated with Rhizobium and mycorrhizal fungi. Int J Plant Sci 155:633–639

    Article  Google Scholar 

  • Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996) Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131

    Article  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45:39–49

    PubMed  CAS  Google Scholar 

  • Borisov AY, Danilova TN, Koroleva TA, Naumkina TS, Pavlova ZB, Pinaev AG, Shtark OY, Tsyganov VE, Voroshilova VA, Zhernakov AI, Zhukov VA, Tikhonovich IA (2004) Pea (Pisum sativum L.) regulatory genes controlling development of nitrogen-fixing nodule and arbuscular mycorrhiza: a review of basic and applied aspects. Prikl Biokhim Mikrobiol (Abstract in English) 13:137–144 (in Russian)

    Google Scholar 

  • Kaschuk G, Kuyper T, Leffelaar P, Hungria M, Giller K (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244

    Article  CAS  Google Scholar 

  • Catoira R, Galera C, De Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Denarie J (2000) Four genes of Medicago truncatula controling components of a nod factor transduction pathway. Plant Cell 12:1647–1666

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chalk PM, Souza R, Urquiaga S, Alves BJR, Boddey RM (2006) The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biol Biochem 38:2944–2951

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • Compant S, van der Heijden M, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214

    PubMed  CAS  Google Scholar 

  • Cook DR (1999) Medicago truncatula—a model in the making! Curr Opin Plant Biol 2:301–304

    Article  PubMed  CAS  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  PubMed  CAS  Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  PubMed  CAS  Google Scholar 

  • Davies FT Jr, Calderon CM, Huaman Z, Gomes R (2005) Influence of a flavonoid (formononetin) on mycorrhizal activity and potato crop productivity in the highlands of Peru. Sci Horticul 106:318–329

    Article  CAS  Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-mycorrhizal plant mutants (myc-) obtained in pea (Pisum sativum L.) and faba bean (Vicia faba L.). Plant Sci 60:215–222

    Article  Google Scholar 

  • Fedorova E, Thomson R, Whitehead LF, Maudoux O, Udvardi MK, Day DA (1999) Localization of H+-ATPase in soybean root nodules. Planta 209:25–32

    Article  PubMed  CAS  Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton W, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:391–401

    Article  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Nat Acad Sci USA 105:4928–4932

    Google Scholar 

  • Glyanko A, Vasileva G (2010) Reactive oxygen and nitrogen species in legume-rhizobial symbiosis: a review. Appl Biochem Microbiol 46:15–22

    Article  CAS  Google Scholar 

  • Harrison MJ (1999) Biotrophic interfaces and nutrient transport in plant fungal symbioses. J Exp Bot 50:1013–1022

    Article  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Ann Rev Microbiol 59:19–42

    Article  CAS  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63:3429–3444

    Article  PubMed  CAS  Google Scholar 

  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433:160–163

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2007) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  PubMed  CAS  Google Scholar 

  • Ianson DC, Linderman RG (1993) Variation in the response of nodulating pigeonpea (Cajanus cajan) to different isolates of mycorrhizal fungi. Symbiosis 15:105–119

    Google Scholar 

  • Ibijbijen J, Urquiaga S, Ismaili M, Alves BJR, Boddey RM (1996) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition and nitrogen fixation of three varieties of common beans. New Phytol 134:353–360

    Article  CAS  Google Scholar 

  • Jacobi LM, Zubkova LA, Barmicheva EM, Tsyganov VE, Borisov AY, Tikhonovich IA (2003) Mycorrhiza 13:9–16

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. I. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol App 3:749–757

    Article  Google Scholar 

  • Kuang R, Liao H, Yan X, Dong Y (2005) Phosphorus and nitrogen interactions in field-grown soybean as related to genetic attributes of root morphological and nodular traits. J Integr Plant Biol 47:549–559

    Article  CAS  Google Scholar 

  • Larose G, Chênevert R, Moutoglis P, Gagne S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the development stage of the symbiosis and the root colonizing arbuscular-mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Lendzemo V, Kuyper T, Vierheilig H (2009) Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi. Mycorrhiza 19:287–294

    Article  PubMed  CAS  Google Scholar 

  • Long S (2001) Genes and signals in the rhizobium-legume symbiosis. Plant Physiol 125:69–72

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lian B, Zhou X, Miransari M, Smith DL (2000) Effects of salicylic acid on the development and root nodulation of soybean seedlings. J Agron Crop Sci 185:187–192

    Article  CAS  Google Scholar 

  • Limpens E, Bisseling T (2003) Signaling in symbiosis. Curr Opin Plant Biol 6:343–350

    Article  PubMed  CAS  Google Scholar 

  • Makoi J, Ndakidemi P (2009) The agronomic potential of vesicular-arbuscular mycorrhiza (VAM) in cereals–legume mixtures in Africa. Afric J of Microbiol Res 3:664–675

    CAS  Google Scholar 

  • Mandal S, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mardukhi B, Rejali F, Daei G, Ardakani MR, Malakouti MJ, Miransari M (2011) Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions. CR Biol 334:564–571

    Article  CAS  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trend Microbiol 17:458–466

    Article  CAS  Google Scholar 

  • Marsh JF, Gobbato E, Schultze M, Oldroyd GED (2008) Ram1 and Ram2: signaling specificity in mycorrhizal symbiosis. Abstract book of 8th European nitrogen fixation conference, Gent, Belgium, August 30–September 3, 2008, p 26

    Google Scholar 

  • Meghvansia M, Prasad K, Harwani D, Mahna S (2008) Response of soybean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. Eur J Soil Biol 44:316–323

    Article  CAS  Google Scholar 

  • McInnes A, Thies JE, Abbotta LK, Howieson JG (2004) Structure and diversity among rhizobial strains, populations and communities–a review. Soil Biol Biochem 36:1295–1308

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL, Mackenzie AF, Bahrami HA, Malakouti MJ, Rejali F (2006) Overcoming the stressful effect of low pH on soybean root hair curling using lipochitooligosaccahrides. Commun Soil Sci Plant Anal 37:1103–1110

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr.] nodulation and yields using signal molecule genistein under field conditions. J Plant Nut 30:1967–1992

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    Article  CAS  Google Scholar 

  • Miransari M, Smith DL (2008) Using signal molecule genistein to alleviate the stress of suboptimal root zone temperature on soybean-Bradyrhizobium symbiosis under different soil textures. J Plant Interact 4:287–295

    Article  Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    Article  CAS  Google Scholar 

  • Miransari M, Smith D (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.)—Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45:146–152

    Article  CAS  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009a) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Till Res 103:282–290

    Article  Google Scholar 

  • Miransari M, Rejali F, Bahrami HA, Malakouti MJ (2009b) Effects of arbuscular mycorrhiza, soil sterilization, and soil compaction on wheat (Triticum aestivum L.) nutrients uptake. Soil Till Res 104:48–55

    Article  Google Scholar 

  • Miransari M (2010a) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stresses. Review article. Plant Biol 12:563–569

    PubMed  CAS  Google Scholar 

  • Miransari M (2010b) Arbuscular mycorrhiza and soil microbes, In: Thangadurai D, Busso CA, Hijri M (eds) Mycorrhizal biotechnology. CRC Press, New York, 226 p

    Google Scholar 

  • Miransari M (2010c) Biological fertilization. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Centre, Badajoz

    Google Scholar 

  • Miransari M, Mackenzie AF (2011) Development of a soil N test for fertilizer requirements for wheat. J Plant Nutr 34:762–777

    Google Scholar 

  • Miransari M (2011a) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011b) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011c) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011d) Soil microbes and plant fertilization. Review article. Appl Microbiol Biotechnol 92:875–885

    Article  PubMed  CAS  Google Scholar 

  • Miransari M, Mackenzie AF (2012) Optimal N fertilization, using total and mineral N, affecting corn (Zea mays L.) grain N uptake. J Plant Nutr 37:232–243

    Google Scholar 

  • Miransari et al (2013) Improving soybean (Glycine max L.) N2-fixation under stress. J Plant Growth Regul 32:909–921

    Google Scholar 

  • Miransari, M. 2013. Soil microbes and the availability of soil nutrients. Acta Physiol Plant 35:3075-3084

    Google Scholar 

  • Miransari et al (2014a) Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol (in press)

    Google Scholar 

  • Miransari M (2014b) Plant growth promoting rhizobacteria. J Plant Nutr (in press)

    Google Scholar 

  • Nazir R, Warmink J, Boersma H, van Elsas J (2010) Mechanisms that promote bacterial¢tness infungal-a¡ected soil microhabitats. FEMS Microbiol Ecol 71:169–185

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324:753–754

    Article  PubMed  CAS  Google Scholar 

  • Opik M, Moora M, Liira J, Koljalg U, Zobel M, Sen R (2003) Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytol 160:581–593

    Article  Google Scholar 

  • Parniske M (2000) Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr Opin Plant Biol 3:320–328

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer PE, Douds DD, Becard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587–598

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Preisig O, Zufferey R, Thöny-Meyer L, Appleby CA, Hennecke H (1996) A high-affinity cbb(3)-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178:1532–1538

    PubMed Central  PubMed  CAS  Google Scholar 

  • Provorov NA, Borisov AY, Tikhonovich IA (2002) Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza. J Theoretic Biol 214:215–232

    Article  CAS  Google Scholar 

  • Ramseier TM, Winteler HV, Hennecke H (1991) Discovery and sequence analysis of bacterial genes involved in the biogenesis of c-type cytochromes. J Biol Chem 266:7793–7803

    PubMed  CAS  Google Scholar 

  • Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618

    Article  Google Scholar 

  • Roth LE, Stacey G (1989) Bacterium release into host-cells of nitrogen fixing soybean nodules the symbiosome membrane comes from 3 sources. Eur J Cell Biol 49:13–23

    PubMed  CAS  Google Scholar 

  • Sachs JL, Essenberg CJ, Turcotte M (2011) New paradigms for the evolution of beneficial infections. Trend Ecol Evol 26:202–209

    Article  Google Scholar 

  • Salvagiotti F, Cassman K, Specht J, Walters D, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop Res 108:1–13

    Article  Google Scholar 

  • Sanders IR, Clapp JP, Wiemken A (1996) The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystem: a key to understanding the ecology and functioning of the mycorrhizal symbioses. New Phytol 133:123–134

    Article  Google Scholar 

  • Scheublin TR, Ridgway KP, Young PW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schoeneberger MM, Volk RJ, Davey CB (1989) Factors influencing early performance of leguminous plants in forest soils. Soil Sci Soc Am J 53:1429–1434

    Article  Google Scholar 

  • Schulze J (2004) How are nitrogen fixation rates regulated in legumes? J Plant Nut Soil Sci 167:125–137

    Article  CAS  Google Scholar 

  • Singh A (2007) Molecular basis of plant-symbiotic fungi interaction: an overview. Sci World 5:115–131

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith A (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    Article  CAS  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanical Gardens, Kew

    Google Scholar 

  • Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48:261–273

    Article  PubMed  CAS  Google Scholar 

  • Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Ann Rev Plant Physiol Plant Mol Biol 48:493–523

    Article  CAS  Google Scholar 

  • Vandermeer JH (1989) The ecology of intercropping. Cambridge University Press, New York

    Book  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vierheilig H, Piche Y (2002) Signalling in arbuscular mycorrhiza, facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell functions. Kluwer Academic/Plenum Publishers, New York, pp 23–39

    Chapter  Google Scholar 

  • Wang X, Yan X, Liao H (2010) Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Bot 106:215–222

    Article  PubMed Central  PubMed  Google Scholar 

  • Whitehead LF, Day DA (1997) The peribacteroid membrane. Physiol Plant 100:30–44

    Article  CAS  Google Scholar 

  • Wu F, Wong M (2009) Dual Inoculation with an arbuscular mycorrhizal fungus and rhizobium to facilitate the growth of alfalfa on coal mine substrates. J Plant Nut 32:755–771

    Article  CAS  Google Scholar 

  • Xie Z, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang F, Smith DL (1995) Preincubation of Bradyrhizobium japonicum with genistein accelerates nodule development of soybean (Glycine max. (L.) Merr.) at suboptimal root zone temperatures. Plant Physiol 108:961–968

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Miransari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miransari, M. (2014). The Interactions of Soil Microbes, Arbuscular Mycorrhizal Fungi and N-Fixing Bacteria, Rhizobium, Under Different Conditions Including Stress. In: Miransari, M. (eds) Use of Microbes for the Alleviation of Soil Stresses. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0721-2_1

Download citation

Publish with us

Policies and ethics