Skip to main content

Role of Polyamines in Alleviating Salt Stress

  • Chapter
  • First Online:
Ecophysiology and Responses of Plants under Salt Stress

Abstract

Salinity is one of the major abiotic stresses that reduce plant growth and productivity of many crops worldwide. Similarly to other stresses, salinity may cause oxidative stress via production of reactive oxygen species (ROS) which in high concentrations provoke oxidative damages to proteins, DNA, and lipids; disturb plant physiological processes and even lead to plant death. In low concentrations, ROS could activate defense mechanisms or repair programs that help plant cell to overcome the negative stress consequences. The diamine putrescine, triamine spermidine and tetraamine spermine are the major polyamines which are constitutive for all plant species. They are organic low-weight molecules with aliphatic amine structure possessing phytohormone-like features and are involved in various important processes of plant growth and development. Under physiological pH conditions they bear positive charge and may conjugate with other negatively charged molecules like phenolic acids, proteins, phospholipids or DNA. The participation of polyamines in the scavenging of free radicals, antioxidant activity and modulation of plant stress tolerance to various abiotic stresses has been extensively studied. The current review will focus on the recent investigations regarding the involvement of polyamines in plant tolerance to salinity stress. The alterations of the endogenous polyamine levels, the changes in their biosynthetic and catabolic enzymes in salt stressed plants, and the role of polyamine metabolism in alleviation of salinity stress is discussed. Possibilities for application of exogenous polyamines to overcome saline stress injuries and to induce plant salt tolerance are also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in pants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Ahmad MSA, Ali Q, Ashraf M, Haider MZ, Abbas Q (2009) Involvement of polyamines, abscisic acid and anti-oxidative enzymes in adaptation of Blue Panicgrass (Panicum antidotale Retz.) to saline environments. Environ Exp Bot 66:409–417

    Article  CAS  Google Scholar 

  • Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Knocz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  CAS  Google Scholar 

  • Alcazar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotech Lett 28:1867–1876

    Article  CAS  Google Scholar 

  • Alet A, Sánchez D, Ferrando A, Fernandez-Tiburcio A, Alcazar R, Cuevas JC, Altabella T, Pico FM, Carrasco P, Menéndez AB, Ruiz OA (2011) Homeostatic control of polyamine levels under long-term salt stress in Arabidopsis. Changes in putrescine content do not alleviate ionic toxicity. Plant Signal Behav 6:1–6

    Article  CAS  Google Scholar 

  • Alet A, Sánchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T, Tiburcio AF, Ruiz OA (2012) New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci 182:94–100

    Article  PubMed  CAS  Google Scholar 

  • Ali RM (2000) Role of putrescine in salt tolerance of Atropa belladonna plant. Plant Sci 152:173–179

    Article  CAS  Google Scholar 

  • Alsocari SS (2011) Synergistic effect of kinetin and spermine on some physiological aspects of seawater stressed Vigna sinensis plants. Saudi J Biol Sci 18:37–44

    Article  CAS  Google Scholar 

  • Alvarez I, Tomaro ML, Benavides MP (2003) Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tiss Organ Cult 74:51–59

    Article  CAS  Google Scholar 

  • An LZ, Liu GX, Zhang MX, Chen T, Liu YH, Feng HY, Xu SJ, Qiang WY, Wang XL (2004) Effect of enhanced UV-B radiation on polyamine content and membrane permeability in cucumber leaves. Russ J Plant Physiol 51:658–662

    Article  CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotech 13:146–150

    Article  PubMed  CAS  Google Scholar 

  • Azevedo Neto AD, Gomes-Filho E, Prisco JT (2008) Salinity and oxidative stress. In: Khan NA, Singh S (eds) Abiotic stress and plant responses. I. K. International Publishing House, New Delhi/Bangalore/Mumbai, pp 57–82

    Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Naoyoshi K, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit tolerance by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum). Plant Sci 166:919–928

    Article  CAS  Google Scholar 

  • Bagni N, Ruiz-Carrascoa K, Franceschetti M, Fornalè S, Fornasiero RB, Tassoni A (2006) Polyamine metabolism and biosynthetic gene expression in Arabidopsis thaliana under salt stress. Plant Physiol Bioch 44:776–786

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Critical Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Ben HA, Ghanem ME, Bouzid S, Lutts S (2009) Abscisic acid has contrasting effects on salt excretion and polyamine concentrations of an inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus. Ann Bot 104:925–936

    Article  CAS  Google Scholar 

  • Benavides MP, Aizencang G, Tomaro ML (1997) Polyamines in Helianthus annuus L. during germination under salt stress. J Plant Growth Regul 16:205–211

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Comba ME, Tomaro ML (2000) Relationship between polyamines and paraquat toxicity in sunflower leaf discs. Plant Growth Regul 31:215–224

    Article  CAS  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2003) Developing slat tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult 73:101–115

    Article  CAS  Google Scholar 

  • Botella MA, del Amor F, Amoros A, Serrano M, Martinez V, Cerda A (2000) Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity. Physiol Plant 109:428–434

    Article  CAS  Google Scholar 

  • Brankova L, Ivanov S, Alexieva V (2007) The induction of microsomal NADPH:cytochrome P450 and NADH:cytochrome b5 redictases by long-term salt treatment of cotton (Gossypium hirsutum L.) and bean (Phaseolus vulgaris L.) plants. Plant Physiol Biochem 45:691–695

    Article  PubMed  CAS  Google Scholar 

  • Camacho-Cristobal JJ, Maldonado JM, Gonzales-Fontes A (2005) Boron deficiency increases putrescine levels in tobacco plants. J Plant Physiol 162:921–928

    Article  PubMed  CAS  Google Scholar 

  • Campestre MP, Bordenave CD, Origone AC, Menéndez AB, Ruiz OA, Rodríguez AA, Maiale SJ (2011) Polyamine catabolism is involved in response to salt stress in soybean hypocotyls. J Plant Physiol 168:1234–1240

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plantarum 116:192–199

    Article  CAS  Google Scholar 

  • Chattopadhyay MK, Gupta S, Sengupta DN, Ghosh B (1997) Expression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L.) cultivars as affected by salinity stress. Plant Mol Biol 34:477–483

    Article  PubMed  CAS  Google Scholar 

  • Cona A, Cenci F, Cervelli M, Federico R, Mariottini P, Moreno S, Angelini R (2003) Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiol 131:803–813

    Article  PubMed  CAS  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  PubMed  CAS  Google Scholar 

  • Cuevas JC, Sánchez DH, Marina M, Ruiz OA (2004) Do polyamines modulate the Lotus glaber NADPH oxidation activity induced by the herbicide methyl viologen? Func Plant Biol 31:921–928

    Article  CAS  Google Scholar 

  • Delis C, Dimou M, Flemetakis E, Aivalakis G, Katinakis P (2006) A root- and hypocotyls-specific gene coding for copper-containing amine oxidase is related to cell expansion in soybean seedlings. J Exp Bot 57:101–111

    Article  PubMed  CAS  Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus – the protective role of polyamines. Biochim Biophys Acta 1767:272–280

    Article  PubMed  CAS  Google Scholar 

  • Deng F (2005) Effects of glyphosate, chlorsulfuron, and methyl jasmonate on growth and alkaloid biosynthesis of jimsonweed (Datura stramonium L.). Pest Biochem Physiol 82:16–26

    Article  CAS  Google Scholar 

  • Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165:1620–1635

    Article  PubMed  CAS  Google Scholar 

  • Durán-Serantes B, González L, Reigosa MJ (2002) Comparative physiological effects of three allelochemicals and two herbicides on Dactylis glomerata. Acta Physiol Plant 24:385–392

    Article  Google Scholar 

  • Edreva A (1996) Polyamines in plants. Bulg J Plant Physiol 22:73–101

    CAS  Google Scholar 

  • El-Shintinawy F (2000) Photosynthesis in two wheat cultivars differing in salt susceptibility. Photosynthetica 38:615–620

    Article  CAS  Google Scholar 

  • Federico R, Angelini R (1991) Polyamine catabolism in plants. In: Slocum RD, Flores HE (eds) Biochemistry and physiology in plants. CRC Press, Boca Raton/Ann Arbor/London, pp 41–56

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, Davey MR (2002) Salinity tolerance and antioxidant status in cotton cultures. Free Radic Biol Med 33:502–511

    Article  PubMed  CAS  Google Scholar 

  • Georgiev GI, Atkins CA (1993) Effect of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis 15:239–255

    Google Scholar 

  • Ghosh N, Adak MK, Ghosh PD, Gupta S, Sen Gupta DN, Mandal C (2011) Differential responses of two rice varieties to salt stress. Plant Biotechnol Rep 5:89–103

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010a) Polyamines and abiotic stress tolerance. Plant Signal Behav 5:26–33

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010b) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 1:35–45

    Article  CAS  Google Scholar 

  • Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:81–88

    Article  Google Scholar 

  • Groppa MD, Benavides MP, Tomaro ML (2003) Polyamine metabolism in sunflower and wheat leaf discs under cadmium and copper stress. Plant Sci 164:293–299

    Article  CAS  Google Scholar 

  • Gupta B, Gupta K, Sengupta DN (2012a) Spermidine-mediated in vitro phosphorylation of transcriptional regulator OSBZ8 by SNF1-type serine/threonine protein kinase SAPK4 homolog in indica rice. Acta Physiol Plant. doi:10.1007/s11738-012-0929-7

  • Gupta K, Gupta B, Ghosh B, Sengupta DN (2012b) Spermidine and abscisic acid-mediated phosphorylation of a cytoplasmic protein from rice root in response to salinity stress. Acta Physiol Plant 34:29–40

    Article  CAS  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  PubMed  CAS  Google Scholar 

  • Hamdani S, Yaakoubi H, Carpentier R (2011) Polyamines interaction with thylakoid proteins during stress. J Photochem Photobiol B Biol 104:314–319

    Article  CAS  Google Scholar 

  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    Article  PubMed  CAS  Google Scholar 

  • Hao Y-J, Zhang Z, Kitashiba H, Honda C, Ubi B, Kita M, Moriguchi T (2005) Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses. Gene 350:41–50

    Article  PubMed  CAS  Google Scholar 

  • He L, Ban Y, Inoue H, Matsuda N, Liu J, Moriguch T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochem 69:2133–2141

    Article  CAS  Google Scholar 

  • Hummel I, Quemmerais F, Gouesbet G, El Amrani A, Frenot Y, Hennion F, Couée I (2004) Characterization of environmental stress responses during early development of Pringlea antiscorbutica in the field at Kerguelen. New Phytol 162:705–715

    Article  Google Scholar 

  • Iqbal M, Ashraf M (2012) Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot. doi:10.1016/j.envexpbot.2010.06.002

  • Ivanova A, Seizova K, Kostova I, Evstatieva L, Stefanov K (2008) Effect of soil salinity on the chemical composition of two populations of Tribulus terrestris from Bulgaria. Compt Rend Acad Bulg Sci 61:55–62

    CAS  Google Scholar 

  • Janicka-Russak M, Kabala K, Mlodzinska E, Klobus G (2010) The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress. J Plant Physiol 167:261–269

    Article  PubMed  CAS  Google Scholar 

  • Jouve L, Hoffmann L, Hausman J-F (2004) Polyamine, carbohydrate, and proline content changes during salt stress exposure of aspen (Populus tremula L.): involvement of oxidation and osmoregulation metabolism. Plant Biol 6:74–80

    Article  PubMed  CAS  Google Scholar 

  • Kakkar RK, Bhaduri S, Rai VK, Kumar S (2000) Amelioration of NaCl stress by arginine in rise seedlings: changes in endogenous polyamines. Biol Plant 43:419–422

    Article  CAS  Google Scholar 

  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant 121:101–107

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stress and upregulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83

    Article  CAS  Google Scholar 

  • Katerova ZI, Todorova D (2009) Endogenous polyamines lessen membrane damages in pea plants provoked by enhanced ultraviolet-C radiation. Plant Growth Regul 57:145–152

    Article  CAS  Google Scholar 

  • Kim J-S, Shim I-S, Kim M-J (2010) Physiological response of Chinese cabbage to salt stress. Kor J Hort Sci Technol 28:343–352

    CAS  Google Scholar 

  • Krishnamurthy R, Bhagwat KA (1989) Polyamines as modulators of salt tolerance in rice cultivars. Plant Physiol 91:500–504

    Article  PubMed  CAS  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro-morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    Article  CAS  Google Scholar 

  • Kuznetsov VV, Shevyakova NI (2007) Polyamines and stress tolerance of plants. Plant Stress 1:50–71

    Google Scholar 

  • Kuznetsov V, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova N (2007) NaCl- and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress. Plant Sci 172:363–370

    Article  CAS  Google Scholar 

  • Lefèvre I, Gratia E, Lutts S (2001) Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci 16:943–952

    Article  Google Scholar 

  • Legocka J, Kluk A (2005) Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings. J Plant Physiol 162:662–668

    Article  PubMed  CAS  Google Scholar 

  • Legocka J, Sobieszczuk-Nowicka E (2012) Sorbitol and NaCl stresses affect free, microsome-associated and thylakoid-associated polyamine content in Zea mays and Phaseolus vulgaris. Acta Physiol Plant 34:1145–1151

    Article  CAS  Google Scholar 

  • Li Z-Y, Chen S-Y (2000a) Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. Theor Appl Genet 100:782–788

    Article  CAS  Google Scholar 

  • Li ZY, Chen SY (2000b) Isolation and characterization of a salt- and drought-inducible gene for S-adenosylmethionine decarboxylase from wheat (Triticum aestivum L.). J Plant Physiol 156:386–393

    CAS  Google Scholar 

  • Liu J, Yu B-J, Liu Y-L (2006a) Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H+-ATPase and H+-PPase activities in barley roots. Plant Growth Regul 49:119–126

    Article  CAS  Google Scholar 

  • Liu J-H, Nada KS, Da CH, Shiba HK, Wen X-P, Pang X-M, Moriguch T (2006b) Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599

    Article  PubMed  CAS  Google Scholar 

  • Liu J-H, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Liu J-H, Inoue H, Moriguchi T (2008) Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. Environ Exp Bot 62:28–35

    Article  CAS  Google Scholar 

  • Maiale S, Sánchez DH, Guirado A, Vidal A, Ruiz OA (2004) Spermine accumulation under salt stress. J Plant Physiol 161:35–42

    Article  PubMed  CAS  Google Scholar 

  • Mansour MMF, Salama KHA, Al-Mutawa MM, Abou Hadid F (2002) Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Biol Plant 45:235–239

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  PubMed  CAS  Google Scholar 

  • Mutlu F, Bozcuk S (2007) Salinity-induced changes of free and bound polyamine levels in sunflower (Helianthus annuus L.) roots differing in salt tolerance. Pak J Bot 39:1097–1102

    Google Scholar 

  • Ndayiragije A, Lutts S (2006) Exogenous putrescine reduces sodium and chloride accumulation in NaCl-treated calli of the salt-sensitive rice cultivar I Kong Pao. Plant Growth Regul 48:51–63

    Article  CAS  Google Scholar 

  • Ndayiragije A, Lutts S (2007) Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl. Plant Soil 291:225–238

    Article  CAS  Google Scholar 

  • Neily MH, Baldet P, Arfaoui I, Saito T, Qiu-li L, Asamizu E, Matsukura C, Moriguchi T, Ezura H (2011) Overexpression of apple spermidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants. Plant Biotechnology 28:33–42

    Article  CAS  Google Scholar 

  • Nenova V (2008) Growth and mineral concentration of pea plants under different salinity levels and iron supply. Gen Appl Plant Physiol 34:189–202

    CAS  Google Scholar 

  • Ogawa S, Mitsuya S (2012) S -methylmethionine is involved in the salinity tolerance of Arabidopsis thaliana plants at germination and early growth stages. Physiol Plant 144:13–19

    Article  PubMed  CAS  Google Scholar 

  • Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51:422–434

    Article  PubMed  CAS  Google Scholar 

  • Pillai MA, Akiyama T (2004) Differential expression of an S-adenosyl-L-methionine decarboxylase gene involved in polyamine biosynthesis under low temperature stress in japonica and indica rice genotypes. Mol Gen Genom 271:141–149

    Article  CAS  Google Scholar 

  • Potters G, Horemans N, Jansen MAK (2010) The cellular redox state in plant stress biology – a charging concept. Plant Physiol Biochem 48:292–300

    Article  PubMed  CAS  Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282

    Article  CAS  Google Scholar 

  • Qi Y-C, Wang F-F, Zhang H, Liu W-Q (2010) Overexpression of suadea salsa S-adenosylmethionine synthetase gene promotes salt tolerance in transgenic tobacco. Acta Physiol Plant 32:263–269

    Article  CAS  Google Scholar 

  • Quinet M, Ndayiragije A, Lefèvre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733

    Article  PubMed  CAS  Google Scholar 

  • Rios-Gonzalez K, Erdei L, Lips SH (2002) The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci 162:923–930

    Article  CAS  Google Scholar 

  • Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60:4249–4262

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Kessler M, Alpuche-Solís AG, Ruiz OA, Jiménez-Bremont JF (2006) Effect of salt stress on the regulation of maize (Zea mays L.) genes involved in polyamine biosynthesis. Plant Growth Regul 48:175–185

    Article  CAS  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosyl methionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Roy P, Niyogi K, Sen Gupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol 168:317–328

    Article  PubMed  CAS  Google Scholar 

  • Sagor GHM, Yamaguchi K, Watanabe K, Berberich T, Kusano T, Takahashi Y (2011) Spatio-temporal expression analysis of Arabidopsis thaliana spermine synthase gene promoter. Plant Biotechnol 28:407–411

    Article  CAS  Google Scholar 

  • Sakr MT, El-Metwally MA (2009) Alleviation of the harmful effects of soil salt stress on growth, yield and endogenous antioxidant content of wheat plant by application of antioxidants. Pak J Biol Sci 12:624–630

    Article  PubMed  CAS  Google Scholar 

  • Saleethong P, Sanitchon J, Knog-ngern K, Theerakulpisut P (2011) Pretreatment with spermidine reverse inhibitory effects of salt stress in two rice (Oriza sativa L.) cultivars differing in their tolerance. Asian J Plant Sci 10:245–254

    Article  CAS  Google Scholar 

  • Sanchez DH, Cuevas JC, Chiesa MA, Ruiz OA (2005) Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Sci 168:541–546

    Article  CAS  Google Scholar 

  • Santa-Cruz A, Acosta M, Perez-Alfocea F, Bolarin MC (1997a) Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Physiol Plant 101:341–346

    Article  CAS  Google Scholar 

  • Santa-Cruz A, Estan MT, Rus A, Bolarin MC, Acosta M (1997b) Effects of NaCl and mannitol iso-osmotic stresses on the free polyamine levels in leaf discs of tomato species differing in salt tolerance. J Plant Physiol 151:754–758

    Article  CAS  Google Scholar 

  • Santa-Cruz A, Perez-Alfocea F, Caro M, Acosta M (1998) Polyamines as short-term salt tolerance traits in tomato. Plant Sci 138:9–16

    Article  CAS  Google Scholar 

  • Sarjala T, Kaunisto S (2002) Potassium nutrition and free polyamines of Betula pendula Roth and Betula pubescens Ehrh. Plant Soil 238:141–149

    Article  Google Scholar 

  • Å ebela M, Radová A, Angelini R, Tavladoraki P, Frébort I, Pec P (2001) FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci 160:197–207

    Article  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  PubMed  CAS  Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581:1993–1999

    Article  PubMed  CAS  Google Scholar 

  • Sheokand S, Kumari A, Sawhney V (2008) Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiol Mol Biol Plant 14:355–362

    Article  CAS  Google Scholar 

  • Shevyakova NI, Rakitin VY, Stetsenko LA, Aronova EE, Kuznetsov VV (2006) Oxidative stress and fluctuations of free and conjugated polyamines in the halophyte Mesembryanthemum crystallinum L. under NaCl salinity. Plant Growth Regul 50:69–78

    Article  CAS  Google Scholar 

  • Shi K, Huang YY, Xia XJ, Zhang YL, Zhou YH, Yu JQ (2008) Protective role of putrescine against salt stress is partially related to the improvement of water relation and nutritional imbalance in cucumber. J Plant Nutr 31:1820–1831

    Article  CAS  Google Scholar 

  • Shoresh M, Spivak M, Bernstein N (2011) Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Radical Biol Med 51:1221–1234

    Article  CAS  Google Scholar 

  • Slocum R (1991) Polyamine Biosynthesis in plants. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton/Ann Arbor/London, pp 23–40

    Google Scholar 

  • Smith J, Burrit D, Bannister P (2001) Ultraviolet-B radiation leads to a reduction in free polyamines in Phaseolus vulgaris L. Plant Growth Regul 35:289–294

    Article  CAS  Google Scholar 

  • Su GX, Bai X (2008) Contribution of putrescine degradation to proline accumulation in soybean leaves under salinity. Biol Plant 52:796–799

    Article  CAS  Google Scholar 

  • Szigeti Z, Lehoczki E (2003) A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pest Manag Sci 59:451–458

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondria Mn-SOD in chloroplast. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ (2005) Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul 46:31–43

    Article  CAS  Google Scholar 

  • Tassoni A, Franceschetti M, Bagni N (2008) Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiol Biochem 46:607–613

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Todorova D, Sergiev I, Alexieva V, Karanov E, Smith A, Hall M (2007) Polyamine content in Arabidopsis thaliana (L.) Heynh during recovery after low and high temperature treatments. Plant Growth Regul 51:185–191

    Article  CAS  Google Scholar 

  • Todorova D, Moskova I, Sergiev I, Alexieva V, Mapelli S (2008) Changes in endogenous polyamines and some stress markers content induced by drought, 4PU-30 and abscisic acid in wheat plants. In: Khan N, Singh S (eds) Abiotic stress and plant responses. I.K. International Publishing House, New Delhi/Bangalore/Mumbai, pp 205–215

    Google Scholar 

  • Tonon G, Kevers C, Faivre-Rampant O, Graziani M, Gaspar T (2004) Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol 161:701–708

    Article  PubMed  CAS  Google Scholar 

  • Turkan I, Demiral T (2008) Salinity tolerance mechanisms of higher plants. In: Khan N, Singh S (eds) Abiotic stress and plant responses. I. K. International Publishing House, New Delhi/Bangalore/Mumbai, pp 105–123

    Google Scholar 

  • Upreti KK, Murti GSR (2010) Response of grape rootstocks to salinity: changes in root growth, polyamines and abscisic acid. Biol Plant 54:730–734

    Article  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito Y, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Comm 313:369–375

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  PubMed  CAS  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    Article  CAS  Google Scholar 

  • Wen X-P, Pang X-M, Matsuda N, Kita M, Inoue H, Hao Y-J, Honda C, Moriguchi T (2008) Overexpression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    Article  PubMed  CAS  Google Scholar 

  • Wi SJ, Kim WT, Park KY (2006) Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep 25:1111–1121

    Article  PubMed  CAS  Google Scholar 

  • Willadino L, Camara T, Boget N, Claparols I, Santos M, Torné JM (1996) Polyamine and free amino acid variations in NaCl-treated embryogenic maize callus from sensitive and resistant cultivars. J Plant Physiol 149:179–185

    Article  CAS  Google Scholar 

  • Xing SG, Yu BJ, Zhang WH, Liu YL (2007) Higher accumulation of g-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots. Plant Physiol Biochem 45:560–566

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Sawada H, Shim IS, Usui K, Fujihara S (2011) Effect of salt stress on physiological response and leaf polyamine content in NERICA rice seedlings. Plant Soil Environ 57:571–576

    CAS  Google Scholar 

  • Zacchini M, de Agazio M (2004) Spread of oxidative damage and antioxidative response through cell layers of tobacco callus after UV-C treatment. Plant Physiol Biochem 42:445–450

    Article  PubMed  CAS  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella MA (2003) Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. Plant Sci 164:557–563

    Article  CAS  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella MA (2004) Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci 167:781–788

    Article  CAS  Google Scholar 

  • Zapata PJ, Serrano M, Pretel MT, Botella MA (2008) Changes in free polyamine concentration induced by salt stress in seedlings of different species. Plant Growth Regul 56:167–177

    Article  CAS  Google Scholar 

  • Zhao FG, Qin P (2004) Protective effect of exogenous polyamines on root tonoplast function against salt stress in barley seedlings. Plant Growth Regul 42:97–103

    Article  CAS  Google Scholar 

  • Zhao FG, Sun C, Liu YL, Zhang WH (2003) Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot Sin 45:295–300

    CAS  Google Scholar 

  • Zhao J, Shi G, Qiuhong Y (2008) Polyamines content and physiological and biochemical responses to ladder concentration of nickel stress in Hydrocharis dubia (Bl.) Backer leaves. Biometals 21:665–674

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Ding GH, Fang K, Zhao FG, Qin P (2006) New perspective on the mechanism of alleviating salt stress by spermidine in barley seedlings. Plant Growth Regul 49:147–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the National Science Fund of Republic Bulgaria – Grant DMU03/60.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Alexieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Todorova, D., Katerova, Z., Sergiev, I., Alexieva, V. (2013). Role of Polyamines in Alleviating Salt Stress. In: Ahmad, P., Azooz, M., Prasad, M. (eds) Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4747-4_13

Download citation

Publish with us

Policies and ethics