Skip to main content
Log in

Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Polyamines play an important role in the plant response to adverse environmental conditions including salt and osmotic stresses. In this investigation, the responses of polyamines to salt-induced oxidative stress were studied in callus cultures and plantlets in Virginia pine (Pinus virginiana Mill.). Our results demonstrated that polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation. Among different polyamines used in this study, putrescine (Put) is more effective in increasing the activities of ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD), reducing the activities of acid phosphatase and V-type H+-ATPase, and decreasing lipid peroxidation in Virginia pine, compared to both spermidine (Spd) and spermine (Spm). When 2.1 mM Put, Spd, and Spm were separately added to the medium, higher diamine oxidase (DAO) and polyamine oxidase (PAO) activities were observed in callus cultures and plantlets, compared to the concentrations of 0.7 and 1.4 mM. The activities of these two enzymes produce hydrogen peroxide (H2O2), which may act in structural defense as a signal molecule and decreasing the protection of polyamines against salt-induced oxidative damage in Virginia pine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Allen (1995) ArticleTitleDissection of oxidative stress tolerance using transgenic plants Plant Physiol. 107 1049–1054 Occurrence Handle12228418

    PubMed  Google Scholar 

  2. M. Aribaud M. Carré J. Martin-Tanguy (1994) ArticleTitlePolyamine metabolism and in vitro cell multiplication and differentiation in leaf explants of Chrysanthemum morifolium Ramat Plant Growth Regul. 15 143–155 Occurrence Handle10.1007/BF00024104

    Article  Google Scholar 

  3. A. Aziz J. Martyn-Tanguy F. Larher (1997) ArticleTitlePlasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment Plant Growth Regul. 21 153–163 Occurrence Handle10.1023/A:1005730509433

    Article  Google Scholar 

  4. A. Aziz J. Martyn-Tanguy F. Larher (1998) ArticleTitleStress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride Physiol. Plant. 104 195–202 Occurrence Handle10.1034/j.1399-3054.1998.1040207.x

    Article  Google Scholar 

  5. N. Bagni R. Pistocchi (1991) Uptake and transport of polyamines and inhibitors of polyamine metabolism in plants R.D. Slocum H.E. Flores (Eds) Biochemistry and Psysiology of Polyamines in Plants CRC Press Boca Raton 105–118

    Google Scholar 

  6. H.U. Bergmeyer K. Gawehn M. Grassl (1974) Methods of Enzymatic Analysis, 2nd edn, Vol. 1 Academic Press New York 495–496

    Google Scholar 

  7. H.J. Bohnert D.E. Nelson R.G. Jensen (1995) ArticleTitleAdaptations to environmental stresses Plant Cell 7 1099–1111 Occurrence Handle10.1105/tpc.7.7.1099 Occurrence Handle12242400

    Article  PubMed  Google Scholar 

  8. A. Borrell L. Carbonell R. Farràs P. Puig-Parellada A.F. Tiburcio (1997) ArticleTitlePolyamines inhibit lipid peroxidation in senescing oat leaves Physiol. Plant. 99 385–390 Occurrence Handle10.1034/j.1399-3054.1997.990305.x

    Article  Google Scholar 

  9. O. Borsani V. Valpuesta M.A. Botella (2001) ArticleTitleEvidence for a role of salicylic acid in the oxidative damage generated by nacl and osmotic stress in Arabidopsis seedlings Plant Physiol. 126 1024–1030 Occurrence Handle10.1104/pp.126.3.1024 Occurrence Handle11457953

    Article  PubMed  Google Scholar 

  10. A. Bouchereau A. Aziz F. Larher J. Martin-Tanguy (1999) ArticleTitlePolyamines and environmental challenges: recent development Plant Sci. 140 103–125 Occurrence Handle10.1016/S0168-9452(98)00218-0

    Article  Google Scholar 

  11. J.S. Boyer (1982) ArticleTitlePlant productivity and environment Science 218 443–448

    Google Scholar 

  12. K. Chartzoulakis G. Klapaki (2000) ArticleTitleResponse of two greenhouse pepper hybrids to NaCl salinity during different growth stages Sci. Hort. 86 247–260 Occurrence Handle10.1016/S0304-4238(00)00151-5

    Article  Google Scholar 

  13. M.K. Chattopadhyay S. Gupta D.N. Sengupta B. Ghosh (1997) ArticleTitleExpression of arginine decarboxylase in seedlings of indica rice (Oryza sativa L.) cultivars as affected by salinity stress Plant Mol. Biol. 34 477–483 Occurrence Handle10.1023/A:1005802320672 Occurrence Handle9225858

    Article  PubMed  Google Scholar 

  14. T. Cowley D.R. Walters (2002) ArticleTitlePolyamine metabolism in barley reacting hypersensitively to the powdery mildew fungus Blumeria graminis f. sp hordei Plant Cell Environ. 25 461–468 Occurrence Handle10.1046/j.0016-8025.2001.00819.x

    Article  Google Scholar 

  15. K.J. Dietz U. Heber T. Mimura (1998) ArticleTitleModulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidifcation of the leaf vacuole upon illumination Biochim. Biophys. Acta 1373 87–92 Occurrence Handle9733929

    PubMed  Google Scholar 

  16. O. Faivre-Rampant C. Kevers J. Dommes T. Gaspar (2000) ArticleTitleThe recalcitrance to rooting of the micropropagated shoots of the rac tobacco mutant: Implications of polyamines and of the polyamine metabolism Plant Physiol. Biochem. 38 441–448 Occurrence Handle10.1016/S0981-9428(00)00768-3

    Article  Google Scholar 

  17. C.H. Foyer P. Descourvieres K.J. Kunert (1994) ArticleTitleProtection against oxygen radicals: an important defense mechanism studied in transgenic plants Plant Cell Environ. 17 507–523

    Google Scholar 

  18. S. Fujihara H. Abe T. Yoneyama (1995) ArticleTitleA new polyamine 4-aminobutylcadaverineoccurrence and its biosynthesis in root nodules of adzuki bean plant Vigna angularis J. Biol. Chem. 270 9932–9938 Occurrence Handle10.1074/jbc.270.17.9932 Occurrence Handle7730376

    Article  PubMed  Google Scholar 

  19. S.M. Gallego M.P. Benavides M.L. Tomaro (1996) ArticleTitleEffect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress Plant Sci. 121 151–159 Occurrence Handle10.1016/S0168-9452(96)04528-1

    Article  Google Scholar 

  20. A.W. Galston H.E. Flores (1991) Polyamines and plant morphogenesis R. Slocum H.E. Flores (Eds) The Biochemistry and Physiology of Polyamines Plants CRC Press Boca Raton 175–186

    Google Scholar 

  21. A.W. Galston R. Kaur-Sawhney T. Altabella A.F. Tiburcio (1997) ArticleTitlePlant polyamines in reproductive activity and response to abiotic stress Bot. Acta 110 197–207

    Google Scholar 

  22. C. Ghoulam K. Fares (2001) ArticleTitleEffect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L) Seed Sci. Technol. 29 357–364

    Google Scholar 

  23. J. Greenway R. Munns (1980) ArticleTitleMechanisms of salt tolerance in nonhalophytes Annu. Rev. Plant Physiol. 31 149–190 Occurrence Handle10.1146/annurev.pp.31.060180.001053

    Article  Google Scholar 

  24. M.D. Groppa M.L. Tomaro M.P. Benavides (2001) ArticleTitlePolyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs Plant Sci. 161 481–488 Occurrence Handle10.1016/S0168-9452(01)00432-0

    Article  Google Scholar 

  25. M.D. Groppa M.P. Benavides M.L. Tomaro (2003) ArticleTitlePolyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress Plant Sci. 164 293–299 Occurrence Handle10.1016/S0168-9452(02)00412-0

    Article  Google Scholar 

  26. D.W. Johnson S.E. Smith A.K. Dobrenz (1992) ArticleTitleGenetic and phenotypic relationships in response to NaCl at different developmental stages in alfalfa Theore. Appl. Genet. 83 833–838

    Google Scholar 

  27. L.M. Kent A. Laüchli (1985) ArticleTitleGermination and seedling growth of cotton: salinity–calcium interactions Plant Cell Environ. 8 155–159

    Google Scholar 

  28. E. Kurt A. Jensen E. Epstein (1986) ArticleTitleResistance of fully imbibed tomato seeds to very high salinities Plant Cell Environ. 9 667–676

    Google Scholar 

  29. A. Lauchli E. Epstein (1990) Plant responses to saline and sodic conditions K.K. Tanji (Eds) Agricultural Salinity Assessment and Management American Society of Civil Engineering New York 113–137

    Google Scholar 

  30. E. Lovaas (1996) Antioxidant and metal-chelating effects of polyamines H. Sies (Eds) Advances in Pharmacology. Antioxidants in Disease Mechanisms and Therapy, Vol. 38 Academic Press New York 119–149

    Google Scholar 

  31. E. Lovaas (1997) ArticleTitleAntioxidative and metal-chelating effects of polyamines Adv. Pharmacol. 38 119–149 Occurrence Handle8895807

    PubMed  Google Scholar 

  32. J. Martin-Tanguy (2001) ArticleTitleMetabolism and function of polyamines in plants: recent development (new approaches) Plant Growth Regul. 34 135–148 Occurrence Handle10.1023/A:1013343106574

    Article  Google Scholar 

  33. T. Mimura M. Kura-Hotta T. Tsujimura M. Ohnishi M. Miura Y. Okazaki M. Mimura M. Maeshima S. Washitani-Nemoto (2003) ArticleTitleRapid increase of vacuolar volume in response to salt stress Planta 216 397–402 Occurrence Handle12520330

    PubMed  Google Scholar 

  34. S. Nag K. Saha M.A. Choudhuri (2000) ArticleTitleA rapid and sensitive assay method for measuring amine oxidase based on hydrogen peroxide–titanium complex formation Plant Sci. 157 157–163 Occurrence Handle10.1016/S0168-9452(00)00281-8 Occurrence Handle10960728

    Article  PubMed  Google Scholar 

  35. B. Palma P. Penaloza C. Galleguillos C. Trujillo (1996) ArticleTitleGerminative capacity and seedling develop of Capsicum annuum L. in an environment with constant salinity J. Exp. Bot. 59 177–186

    Google Scholar 

  36. D. Pasternak (1987) ArticleTitleSalt tolerance and crop production: a comprehensive approach Annu. Rev. Phytopathol. 25 271–291

    Google Scholar 

  37. A.H. Price G.A.F. Hendry (1991) ArticleTitleIron-catalyzed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals Plant Cell Environ. 14 477–484

    Google Scholar 

  38. M.I. Puga-Hermida M. Gallardo A.J. Matilla (2003) ArticleTitleThe zygotic embryogenesis and ripening of Brassica rapa seeds provokes important alterations in the levels of free and conjugated abscisic acid and polyamines Physiol. Plant. 117 279–288 Occurrence Handle10.1034/j.1399-3054.2003.00033.x

    Article  Google Scholar 

  39. M. Roy R. Wu (2002) ArticleTitleOverexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance Plant Sci. 163 987–992 Occurrence Handle10.1016/S0168-9452(02)00272-8

    Article  Google Scholar 

  40. A. Santa-Cruz F. Perez-Alfocea M. Caro M. Acosta (1998) ArticleTitlePolyamines as short-term salt tolerance traits in tomato Plant Sci. 138 9–16 Occurrence Handle10.1016/S0168-9452(98)00143-5

    Article  Google Scholar 

  41. W. Tang R.J. Newton (2004) ArticleTitleIncrease of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.) Plant Sci. 167 621–628 Occurrence Handle10.1016/j.plantsci.2004.05.024

    Article  Google Scholar 

  42. W. Tang R.J. Newton V. Outhavong (2004) ArticleTitleExogenously added polyamines recover browning tissues into normal callus cultures and improve plant regeneration in pine Physiol. Plant. 122 386–395 Occurrence Handle10.1111/j.1399-3054.2004.00406.x

    Article  Google Scholar 

  43. W. Tang F. Ouyang Z.C. Guo (1998) ArticleTitlePlant regeneration through organogenesis from callus induced from mature zygotic embryos of loblolly pine Plant Cell Rep. 17 557–560 Occurrence Handle10.1007/s002990050441

    Article  Google Scholar 

  44. A.F. Tiburcio T. Altabella T. Borrell C. Masgrau (1997) ArticleTitlePolyamines metabolism and its regulation Physiol. Plant. 100 664–674 Occurrence Handle10.1034/j.1399-3054.1997.1000330.x

    Article  Google Scholar 

  45. A.F. Tiburcio J.L. Campos X. Figueras R.T. Besford (1993) ArticleTitleRecent advances in the understanding of polyamine functios during plant development Plant Growth Regul. 12 331–340 Occurrence Handle10.1007/BF00027215

    Article  Google Scholar 

  46. A.F. Tiburcio X. Figueras I. Claparols M. Santos J.M. Torne (1991) ArticleTitleImproved plant-regeneration in maize callus-cultures after pretreatment with dl-alpha-difluoromethylarginine Plant Cell Tiss. Org. Cult. 27 27–32 Occurrence Handle10.1007/BF00048202

    Article  Google Scholar 

  47. M.L. van Buuren L. Guidi S. Fornalè F. Ghetti M. Franceschetti G.F. Soldatini N. Bagni (2002) ArticleTitleOzone-response mechanisms in tobacco: implications of polyamine metabolism New Phytolog. 156 389–398 Occurrence Handle10.1046/j.1469-8137.2002.00539.x

    Article  Google Scholar 

  48. D.R. Walters (2000) ArticleTitlePolyamines in plant-microbe interactions Physiol. Mol. Plant 57 137–146 Occurrence Handle10.1006/pmpp.2000.0286

    Article  Google Scholar 

  49. D.R. Walters (2003) ArticleTitleResistance to plant pathogens: possible roles for free polyamines and polyamine catabolism New Phytolog. 159 109–115 Occurrence Handle10.1046/j.1469-8137.2003.00802.x

    Article  Google Scholar 

  50. P.J. Zapata M. Serrano M.T. Pretel A. Amorós M.A. Botella (2003) ArticleTitleChanges in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination Plant Sci. 164 557–563 Occurrence Handle10.1016/S0168-9452(03)00005-0

    Article  Google Scholar 

  51. P. J. Zapata M. Serrano M. T. Pretel A. Amorós M.Á. Botella (2004) ArticleTitlePolyamines and ethylene changes during germination of different plant species under salinity Plant Sci. 167 781–788 Occurrence Handle10.1016/j.plantsci.2004.05.014

    Article  Google Scholar 

  52. J.K. Zhu (2001) ArticleTitlePlant salt tolerance Trends Plant Sci. 6 66–71 Occurrence Handle10.1016/S1360-1385(00)01838-0 Occurrence Handle11173290

    Article  PubMed  Google Scholar 

  53. J.K. Zhu (2002) ArticleTitleSalt and drought stress signal transduction in plants Annu. Rev. Plant Biol. 53 247–273 Occurrence Handle10.1146/annurev.arplant.53.091401.143329 Occurrence Handle12221975

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, W., Newton, R. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul 46, 31–43 (2005). https://doi.org/10.1007/s10725-005-6395-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-005-6395-0

Keywords

Navigation