Skip to main content

The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment

  • Protocol
  • First Online:
miRNomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2257))

Abstract

Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: “How are oncogenes and/or tumor suppressor genes regulated by miRNAs?” and “Which other mechanisms in cancer cells are regulated by miRNAs?” In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand P, Kunnumakkara AB, Sundaram C et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oliveto S, Mancino M, Manfrini N et al (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8:45–56

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bhat SA, Majid S, Hassan T (2019) MicroRNAs and its emerging role as breast cancer diagnostic marker- a review. Adv Biomarker Sci Technol 1:1–8

    Article  Google Scholar 

  4. Farazi TA, Hoell JI, Morozov P et al (2013) MicroRNAs in human cancer. Adv Exp Med Biol 774:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang J, Yu J-T, Tan L et al (2015) Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Sci Rep 5:9522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Monroig PDC, Chen L, Zhang S et al (2015) Small molecule compounds targeting miRNAs for cancer therapy. Adv Drug Deliv Rev 81:104–116

    Article  CAS  Google Scholar 

  7. Fernandez-Piñeiro I, Badiola I, Sanchez A (2017) Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv 35:350–360

    Article  PubMed  CAS  Google Scholar 

  8. Dykes IM, Emanueli C (2017) Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics 15:177–186

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee KT, Nam JW (2017) Post-transcriptional and translational regulation of mRNA-like long non-coding RNAs by microRNAs in early developmental stages of zebrafish embryos. BMB Rep 50:226–231

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Lee CGL (2009) MicroRNA and cancer--focus on apoptosis. J Cell Mol Med 13:12–23

    Article  PubMed  CAS  Google Scholar 

  11. Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1:15004

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ramassone A, Pagotto S, Veronese A et al (2018) Epigenetics and MicroRNAs in cancer. Int J Mol Sci 19

    Google Scholar 

  13. Olejniczak M, Kotowska-Zimmer A, Krzyzosiak W (2018) Stress-induced changes in miRNA biogenesis and functioning. Cell Mol Life Sci 75:177–191

    Article  CAS  PubMed  Google Scholar 

  14. Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17:719–732

    Article  CAS  PubMed  Google Scholar 

  15. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15:321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davis BN, Hata A (2009) Regulation of MicroRNA biogenesis: a miRiad of mechanisms. Cell Commun Signal 7:18–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Venkatadri R, Muni T, Iyer AKV et al (2016) Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis 7:e2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu Y, Huang J, Ma L et al (2016) MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways. Cancer Lett 371:171–181

    Article  CAS  PubMed  Google Scholar 

  19. Morgado AL, Rodrigues CM, Solá S (2016) MicroRNA-145 regulates neural stem cell differentiation through the Sox2-Lin28/let-7 signaling pathway. Stem Cells 34:1386–1395

    Article  CAS  PubMed  Google Scholar 

  20. Li Y, Kuscu C, Banach A et al (2015) miR-181a-5p inhibits cancer cell migration and angiogenesis via downregulation of matrix Metalloproteinase-14. Cancer Res 75:2674–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O’Bryan S, Dong S, Mathis JM et al (2017) The roles of oncogenic miRNAs and their therapeutic importance in breast cancer. Eur J Cancer 72:1–11

    Article  PubMed  CAS  Google Scholar 

  22. Staedel C, Tran TPA, Giraud J et al (2018) Modulation of oncogenic miRNA biogenesis using functionalized polyamines. Sci Rep 8:1667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. O’Brien J, Hayder H, Zayed Y et al (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402

    Article  Google Scholar 

  24. Fuziwara CS, Kimura ET (2015) Insights into regulation of the miR-17-92 cluster of miRNAs in cancer. Front Med 2:64

    Article  Google Scholar 

  25. Labi V, Schoeler K, Melamed D (2019) miR-17∼92 in lymphocyte development and lymphomagenesis. Cancer Lett 446:73–80

    Article  CAS  PubMed  Google Scholar 

  26. Liu F, Cheng L, Xu J et al (2018) miR-17-92 functions as an oncogene and modulates NF-kappaB signaling by targeting TRAF3 in MGC-803 human gastric cancer cells. Int J Oncol 53:2241–2257

    CAS  PubMed  Google Scholar 

  27. Zhou P, Ma L, Zhou J et al (2016) miR-17-92 plays an oncogenic role and conveys chemo-resistance to cisplatin in human prostate cancer cells. Int J Oncol 48:1737–1748

    Article  CAS  PubMed  Google Scholar 

  28. Chaluvally-Raghavan P, Jeong KJ, Pradeep S et al (2016) Direct upregulation of STAT3 by MicroRNA-551b-3p deregulates growth and metastasis of ovarian cancer. Cell Rep 15:1493–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Acunzo M, Croce CM (2016) Downregulation of miR-15a and miR-16-1 at 13q14 in chronic lymphocytic leukemia. Clin Chem 62:655–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan H, Zhou M, Bhattarai U et al (2019) Cyclic Peptidomimetics as inhibitor for miR-155 biogenesis. Mol Pharm 16:914–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lim D, Byun WG, Park SB (2018) Restoring Let-7 microRNA biogenesis using a small-molecule inhibitor of the protein–RNA interaction. ACS Med Chem Lett 9:1181–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675

    Article  PubMed  Google Scholar 

  33. Sabry D, El-Deek SEM, Maher M et al (2018) Role of miRNA-210, miRNA-21 and miRNA-126 as diagnostic biomarkers in colorectal carcinoma: impact of HIF-1alpha-VEGF signaling pathway. Mol Cell Biochem 454(1–2):177–189. https://doi.org/10.1007/s11010-018-3462-1

    Article  CAS  PubMed  Google Scholar 

  34. Anastasiadou E, Jacob LS, Slack FJ (2017) Non-coding RNA networks in cancer. Nat Rev Cancer 18:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Mizoguchi A, Takayama A, Arai T et al (2018) MicroRNA-8073: tumor suppressor and potential therapeutic treatment. PLoS One 13:e0209750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang B, Chai C, Wu H et al (2018) MicroRNA-498 promotes proliferation and migration by targeting the tumor suppressor PTEN in breast cancer cells. Carcinogenesis 39:1185–1196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Gonzales-Aloy E, Grebert-Wade DG, Wang JY (2018) Abstract 484: tumor suppressor miRNA-101 modulates leukemogenesis by targeting the EZH2/Wnt/β-catenin signaling pathways. Cancer Res 78:484–484

    Google Scholar 

  38. Bowles KM, Rushworth SA (2018) Targeting the KEAP1/NRF2 pathway to manipulate the expression of oncogenic and oncosuppressive miRNAs in human leukemia. Mol Cell Oncol 5:e988484

    PubMed  PubMed Central  Google Scholar 

  39. Song S, Yang Y, Liu M et al (2018) MiR-125b attenuates human hepatocellular carcinoma malignancy through targeting SIRT6. Am J Cancer Res 8:993–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Witten LW, Cheng CJ, Slack FJ (2018) miR-155 drives oncogenesis by promoting and cooperating with mutations in the c-Kit oncogene. Oncogene 38(12):2151–2161. https://doi.org/10.1038/s41388-018-0571-y

    Article  CAS  PubMed  Google Scholar 

  41. Yan L, Wang S, Li Y et al (2018) SNHG5 promotes proliferation and induces apoptosis in melanoma by sponging miR-155. RSC Adv 8:6160–6168

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tran DDH, Kessler C, Niehus SE et al (2017) Myc target gene, long intergenic noncoding RNA, Linc00176 in hepatocellular carcinoma regulates cell cycle and cell survival by titrating tumor suppressor microRNAs. Oncogene 37:75

    Article  PubMed  CAS  Google Scholar 

  43. Zhang Q, Lv R, Guo W et al (2018) microRNA-802 inhibits cell proliferation and induces apoptosis in human cervical cancer by targeting serine/arginine-rich splicing factor 9. J Cell Biochem 120(6):10370–10379. https://doi.org/10.1002/jcb.28321

    Article  CAS  PubMed  Google Scholar 

  44. Jiang J, Yang X, He X et al (2019) MicroRNA-449b-5p suppresses the growth and invasion of breast cancer cells via inhibiting CREPT-mediated Wnt/beta-catenin signaling. Chem Biol Interact 302:74–82

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Chang W, Chang W et al (2018) MicroRNA-376c-3p facilitates human hepatocellular carcinoma progression via repressing AT-rich interaction domain 2. J Cancer 9:4187–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo H, Ji F, Zhao X et al (2019) MicroRNA-371a-3p promotes progression of gastric cancer by targeting TOB1. Cancer Lett 443:179–188

    Article  CAS  PubMed  Google Scholar 

  47. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goldar S, Khaniani MS, Derakhshan SM et al (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev 16:2129–2144

    Article  PubMed  Google Scholar 

  49. Flusberg DA, Sorger PK (2015) Surviving apoptosis: life-death signaling in single cells. Trends Cell Biol 25:446–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Birkinshaw RW, Czabotar PE (2017) The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin Cell Dev Biol 72:152–162

    Article  CAS  PubMed  Google Scholar 

  51. Edlich F (2018) BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun 500:26–34

    Article  CAS  PubMed  Google Scholar 

  52. Wang YB, Zhao XH, Li G et al (2018) MicroRNA-184 inhibits proliferation and promotes apoptosis of human colon cancer SW480 and HCT116 cells by downregulating C-MYC and BCL-2. J Cell Biochem 119:1702–1715

    Article  CAS  PubMed  Google Scholar 

  53. Chen MJ, Wu DW, Wang GC et al (2018) MicroRNA-630 may confer favorable cisplatin-based chemotherapy and clinical outcomes in non-small cell lung cancer by targeting Bcl-2. Oncotarget 9:13758–13767

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu HN, Qie P, Yang G et al (2018) miR-181b inhibits chemoresistance in cisplatin-resistant H446 small cell lung cancer cells by targeting Bcl-2. Arch Med Sci 14:745–751

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Deng M, Yuan H, Liu S et al (2019) Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy 21:96–106

    Article  CAS  PubMed  Google Scholar 

  56. Aakko S, Straume AH, Birkeland EE et al (2019) MYC-induced miR-203b-3p and miR-203a-3p control Bcl-xL expression and paclitaxel sensitivity in tumor cells. Transl Oncol 12:170–179

    Article  PubMed  Google Scholar 

  57. Pan Y, Ye C, Tian Q et al (2018) miR-145 suppresses the proliferation, invasion and migration of NSCLC cells by regulating the BAX/BCL-2 ratio and the caspase-3 cascade. Oncol Lett 15:4337–4343

    PubMed  PubMed Central  Google Scholar 

  58. Zhou M, Liu Z, Zhao Y et al (2010) MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 285:21496–21507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kong F, Sun C, Wang Z et al (2011) miR-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic Bcl-2 antagonist killer 1. J Huazhong Univ Sci Technolog Med Sci 31:543

    Article  CAS  PubMed  Google Scholar 

  60. Zaman S, Wang R, Gandhi V (2014) Targeting the apoptosis pathway in hematologic malignancies. Leuk Lymphoma 55:1980–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu Y, Tang H, Zhang L et al (2019) Suppression of miR-21-3p enhances TRAIL-mediated apoptosis in liver cancer stem cells by suppressing the PI3K/Akt/bad cascade via regulating PTEN. Cancer Manag Res 11:955–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zheng M, Wu Z, Wu A et al (2016) MiR-145 promotes TNF-α-induced apoptosis by facilitating the formation of RIP1-FADDcaspase-8 complex in triple-negative breast cancer. Tumor Biol 37:8599–8607

    Article  CAS  Google Scholar 

  63. Cui J, Wei C, Deng L et al (2018) MicroRNA143 increases cell apoptosis in myelodysplastic syndrome through the Fas/FasL pathway both in vitro and in vivo. Int J Oncol 53:2191–2199

    CAS  PubMed  Google Scholar 

  64. Pang X, Zhou Z, Yu Z et al (2019) Foxo3a-dependent miR-633 regulates chemotherapeutic sensitivity in gastric cancer by targeting Fas-associated death domain. RNA Biol 16:233–248

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shukla K, Sharma AK, Ward A et al (2015) MicroRNA-30c-2-3p negatively regulates NF-kappaB signaling and cell cycle progression through downregulation of TRADD and CCNE1 in breast cancer. Mol Oncol 9:1106–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo T, Zhang Y, Qu X et al (2018) miR-200a enhances TRAIL-induced apoptosis in gastric cancer cells by targeting A20. Cell Biol Int 42:506–514

    Article  CAS  PubMed  Google Scholar 

  67. Li X, Chen W, Jin Y et al (2019) miR-142-5p enhances cisplatin-induced apoptosis in ovarian cancer cells by targeting multiple anti-apoptotic genes. Biochem Pharmacol 161:98–112

    Article  CAS  PubMed  Google Scholar 

  68. Jeggo PA, Pearl LH, Carr AM (2015) DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer 16:35

    Article  PubMed  CAS  Google Scholar 

  69. Hu H, Gatti RA (2010) MicroRNAs: new players in the DNA damage response. J Mol Cell Biol 3:151–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ranjha L, Howard SM, Cejka P (2018) Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 127:187–214

    Article  CAS  PubMed  Google Scholar 

  71. Sugasawa K (2019) Molecular mechanism of DNA damage recognition for global genomic nucleotide excision repair: a defense system against UV-induced skin cancer. In: Nishigori C, Sugasawa K (eds) DNA repair disorders. Springer Singapore, Singapore, pp 1–23

    Google Scholar 

  72. Rudolph C, Melau C, Nielsen JE et al (2017) Involvement of the DNA mismatch repair system in cisplatin sensitivity of testicular germ cell tumours. Cell Oncol 40:341–355

    Article  CAS  Google Scholar 

  73. Patel N, Garikapati KR, Pandita RK et al (2017) miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep 7:4263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Choi YE, Meghani K, Brault M-E et al (2016) Platinum and PARP inhibitor resistance due to overexpression of MicroRNA-622 in BRCA1-mutant ovarian cancer. Cell Rep 14:429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li J-H, Luo N, Zhong M-Z et al (2016) Inhibition of microRNA-196a might reverse cisplatin resistance of A549/DDP non–small-cell lung cancer cell line. Tumor Biol 37:2387–2394

    Article  CAS  Google Scholar 

  76. Du P, Zhao H, Peng R et al (2017) LncRNA-XIST interacts with <em>miR-29c</em> to modulate the chemoresistance of glioma cell to TMZ through DNA mismatch repair pathway. Biosci Rep 37:BSR20170696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu Y, Qin T, Li J et al (2017) MicroRNA-140-5p inhibits invasion and angiogenesis through targeting VEGF-A in breast cancer. Cancer Gene Ther 24:386–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yachi K, Tsuda M, Kohsaka S et al (2018) miR-23a promotes invasion of glioblastoma via HOXD10-regulated glial-mesenchymal transition. Signal Transduct Target Ther 3:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Amaar YG, Reeves ME (2019) RASSF1C regulates miR-33a and EMT marker gene expression in lung cancer cells. Oncotarget 10:123–132

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chen X, Zeng K, Xu M et al (2019) P53-induced miR-1249 inhibits tumor growth, metastasis, and angiogenesis by targeting VEGFA and HMGA2. Cell Death Dis 10:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Jiang J, Xie C, Liu Y et al (2019) Up-regulation of miR-383-5p suppresses proliferation and enhances chemosensitivity in ovarian cancer cells by targeting TRIM27. Biomed Pharmacother 109:595–601

    Article  CAS  PubMed  Google Scholar 

  82. Luan T, Fu S, Huang L et al (2018) MicroRNA-98 promotes drug resistance and regulates mitochondrial dynamics by targeting LASS2 in bladder cancer cells. Exp Cell Res 373:188–197

    Article  CAS  PubMed  Google Scholar 

  83. Shi L, Xi J, Xu X et al (2019) MiR-148a suppressed cell invasion and migration via targeting WNT10b and modulating beta-catenin signaling in cisplatin-resistant colorectal cancer cells. Biomed Pharmacother 109:902–909

    Article  CAS  PubMed  Google Scholar 

  84. Park GB, Kim D (2019) MicroRNA-503-5p inhibits the CD97-mediated JAK2/STAT3 pathway in metastatic or paclitaxel-resistant ovarian cancer cells. Neoplasia 21:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee SD, Yu D, Lee DY et al (2019) Upregulated microRNA-193a-3p is responsible for cisplatin resistance in CD44(+) gastric cancer cells. Cancer Sci 110:662–673

    Article  CAS  PubMed  Google Scholar 

  86. Liu Y, Lei P, Qiao H et al (2019) miR-9 enhances the Chemosensitivity of AML cells to Daunorubicin by targeting the EIF5A2/MCL-1 Axis. Int J Biol Sci 15:579–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhan T, Huang X, Tian X et al (2018) Downregulation of MicroRNA-455-3p links to proliferation and drug resistance of pancreatic cancer cells via targeting TAZ. Mol Ther Nucleic Acids 10:215–226

    Article  CAS  PubMed  Google Scholar 

  88. Zhao T, Chen Y, Sheng S et al (2018) Upregulating microRNA-498 inhibits gastric cancer proliferation invasion and chemoresistance through inverse interaction of Bmi1. Cancer Gene Ther 26(11–12):366–373. https://doi.org/10.1038/s41417-018-0065-7

    Article  CAS  PubMed  Google Scholar 

  89. Zhang Y, Xia F, Zhang F et al (2019) miR-135b-5p enhances doxorubicin-sensitivity of breast cancer cells through targeting anterior gradient 2. J Exp Clin Cancer Res 38:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen X, Zhu H, Ye W et al (2019) MicroRNA29a enhances cisplatin sensitivity in nonsmall cell lung cancer through the regulation of REV3L. Mol Med Rep 19:831–840

    CAS  PubMed  Google Scholar 

  91. Turato C, Fornari F, Pollutri D et al (2019) MiR-122 targets SerpinB3 and is involved in Sorafenib resistance in hepatocellular carcinoma. J Clin Med 8:171

    Article  CAS  PubMed Central  Google Scholar 

  92. Song YK, Wang Y, Wen YY et al (2018) MicroRNA-22 suppresses breast cancer cell growth and increases paclitaxel sensitivity by targeting NRAS. Technol Cancer Res Treat 17:1533033818809997

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang Z, Mao JW, Liu GY et al (2019) MicroRNA-372 enhances radiosensitivity while inhibiting cell invasion and metastasis in nasopharyngeal carcinoma through activating the PBK-dependent p53 signaling pathway. Cancer Med 8:712–728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. El Bezawy R, Tinelli S, Tortoreto M et al (2019) miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCepsilon and ZEB1 inhibition. J Exp Clin Cancer Res 38:51

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pinweha P, Rattanapornsompong K, Charoensawan V et al (2016) MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. Comput Struct Biotechnol J 14:223–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tomasetti M, Amati M, Santarelli L et al (2016) MicroRNA in metabolic re-programming and their role in tumorigenesis. Int J Mol Sci 17:754

    Article  PubMed Central  CAS  Google Scholar 

  97. Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shankaraiah RC, Veronese A, Sabbioni S et al (2018) Non-coding RNAs in the reprogramming of glucose metabolism in cancer. Cancer Lett 419:167–174

    Article  CAS  PubMed  Google Scholar 

  100. Yang J, Li J, Le Y et al (2016) PFKL/miR-128 axis regulates glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung cancer. Am J Cancer Res 6:473–485

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen J, Yu Y, Chen X et al (2018) MiR-139-5p is associated with poor prognosis and regulates glycolysis by repressing PKM2 in gallbladder carcinoma. Cell Prolif 51:e12510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Yu G, Sun W, Shen Y et al (2018) PKM2 functions as a potential oncogene and is a crucial target of miR-148a and miR-326 in thyroid tumorigenesis. Am J Transl Res 10:1793–1801

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Li L, Kang L, Zhao W et al (2017) miR-30a-5p suppresses breast tumor growth and metastasis through inhibition of LDHA-mediated Warburg effect. Cancer Lett 400:89–98

    Article  CAS  PubMed  Google Scholar 

  104. Kim S, Lee E, Jung J et al (2018) microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer. Oncogene 37:2982–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Xiaohong Z, Lichun F, Na X et al (2016) MiR-203 promotes the growth and migration of ovarian cancer cells by enhancing glycolytic pathway. Tumour Biol 37:14989–14997

    Article  PubMed  CAS  Google Scholar 

  106. Liu Q, Luo Q, Halim A et al (2017) Targeting lipid metabolism of cancer cells: a promising therapeutic strategy for cancer. Cancer Lett 401:39–45

    Article  CAS  PubMed  Google Scholar 

  107. Ding D, Ye G, Lin Y et al (2019) MicroRNA-26a-CD36 signaling pathway: pivotal role in lipid accumulation in hepatocytes induced by PM2.5 liposoluble extracts. Environ Pollut 248:269–278

    Article  CAS  PubMed  Google Scholar 

  108. Borji M, Nourbakhsh M, Shafiee SM et al (2019) Down-regulation of SIRT1 expression by mir-23b contributes to lipid accumulation in HepG2 cells. Biochem Genet 57(4):507–521. https://doi.org/10.1007/s10528-019-09905-5

    Article  CAS  PubMed  Google Scholar 

  109. Li G, Li M, Hu J et al (2017) The microRNA-182-PDK4 axis regulates lung tumorigenesis by modulating pyruvate dehydrogenase and lipogenesis. Oncogene 36:989–998

    Article  CAS  PubMed  Google Scholar 

  110. Cheng L, Zhu Y, Han H et al (2017) MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice. Cell Death Dis 8:e2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xi J, Huang Q, Wang L et al (2018) miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene 37:3151–3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Botta C, Cucè M, Pitari MR et al (2017) MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells. Leukemia 32:1003

    Article  PubMed  CAS  Google Scholar 

  113. Graff JW, Dickson AM, Clay G et al (2012) Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem 287:21816–21825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li N, Qin JF, Han X et al (2018) miR-21a negatively modulates tumor suppressor genes PTEN and miR-200c and further promotes the transformation of M2 macrophages. Immunol Cell Biol 96:68–80

    Article  CAS  PubMed  Google Scholar 

  115. Liu R, Lu Z, Gu J et al (2018) MicroRNAs 15A and 16-1 activate signaling pathways that mediate chemotaxis of immune regulatory B cells to colorectal tumors. Gastroenterology 154:637–651 e637

    Article  CAS  PubMed  Google Scholar 

  116. Zhang Q, Xin H, Fen T (2018) Function of microRNA141 in human breast cancer through cytotoxic CD4+ T cells regulated by MAP4K4 expression. Mol Med Rep 17:7893–7901

    CAS  PubMed  Google Scholar 

  117. Zhang Y, Wang ZC, Zhang ZS et al (2018) MicroRNA-155 regulates cervical cancer via inducing Th17/Treg imbalance. Eur Rev Med Pharmacol Sci 22:3719–3726

    CAS  PubMed  Google Scholar 

  118. Wang D, Tang M, Zong P et al (2018) MiRNA-155 regulates the Th17/Treg ratio by targeting SOCS1 in severe acute pancreatitis. Front Physiol 9:686–686

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhao H, Su W, Kang Q et al (2018) Natural killer cells inhibit oxaliplatin-resistant colorectal cancer by repressing WBSCR22 via upregulating microRNA-146b-5p. Am J Cancer Res 8:824–834

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Guo X, Qiu W, Liu Q et al (2018) Immunosuppressive effects of hypoxia-induced glioma exosomes through myeloid-derived suppressor cells via the miR-10a/Rora and miR-21/Pten pathways. Oncogene 37:4239–4259

    Article  CAS  PubMed  Google Scholar 

  121. Givel AM, Kieffer Y, Scholer-Dahirel A et al (2018) miR200-regulated CXCL12beta promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nat Commun 9:1056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Porzycki P, Ciszkowicz E, Semik M et al (2018) Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int Urol Nephrol 50:1619–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bai X, Liu Z, Shao X et al (2019) The heterogeneity of plasma miRNA profiles in hepatocellular carcinoma patients and the exploration of diagnostic circulating miRNAs for hepatocellular carcinoma. PLoS One 14:e0211581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu X, Xu X, Pan B et al (2019) Circulating miR-1290 and miR-320d as novel diagnostic biomarkers of human colorectal cancer. J Cancer 10:43–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Wang X, Liang JQ, Zhang LH et al (2019) C8orf76 promotes gastric tumorigenicity and metastasis by directly inducing lncRNA DUSP5P1 and associates with patient outcomes. Clin Cancer Res 25(10):3128–3140. https://doi.org/10.1158/1078-0432.Ccr-18-2804

    Article  CAS  PubMed  Google Scholar 

  126. Yao C, Liu HN, Wu H et al (2018) Diagnostic and prognostic value of circulating MicroRNAs for esophageal squamous cell carcinoma: a systematic review and meta-analysis. J Cancer 9:2876–2884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Goto T, Fujiya M, Konishi H et al (2018) An elevated expression of serum exosomal microRNA-191, − 21, −451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer 18:116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Liu HN, Wu H, Tseng YJ et al (2018) Serum microRNA signatures and metabolomics have high diagnostic value in gastric cancer. BMC Cancer 18:415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Swellam M, El Magdoub HM, Hassan NM et al (2018) Potential diagnostic role of circulating MiRNAs in breast cancer: implications on clinicopathological characters. Clin Biochem 56:47–54

    Article  CAS  PubMed  Google Scholar 

  130. Su YY, Sun L, Guo ZR et al (2019) Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J Ovarian Res 12:6

    Article  PubMed  PubMed Central  Google Scholar 

  131. Prahm KP, Hogdall C, Karlsen MA et al (2018) Identification and validation of potential prognostic and predictive miRNAs of epithelial ovarian cancer. PLoS One 13:e0207319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huang Z, Chen W, Du Y et al (2019) Serum miR-16 as a potential biomarker for human cancer diagnosis: results from a large-scale population. J Cancer Res Clin Oncol 145:787–796

    Article  CAS  PubMed  Google Scholar 

  133. Huang D, Peng Y, Ma K et al (2018) MiR-20a, a novel promising biomarker to predict prognosis in human cancer: a meta-analysis. BMC Cancer 18:1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pan J, Zhou C, Zhao X et al (2018) A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci Rep 8:16699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Li P, Fan H, He Q (2018) Investigation of the clinical significance and prognostic value of microRNA-145 in human hepatocellular carcinoma. Medicine (Baltimore) 97:e13715

    Article  CAS  Google Scholar 

  136. Wang W, Hu S, Chang J et al (2018) Down-regulated microRNA-34a expression as a prognostic marker for poor osteosarcoma in mice: a systematic review and meta-analysis. J Cancer 9:4179–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang N, Li Y, Zheng Y et al (2018) miR-608 and miR-4513 significantly contribute to the prognosis of lung adenocarcinoma treated with EGFR-TKIs. Lab Invest 99(4):568–576. https://doi.org/10.1038/s41374-018-0164-y

    Article  CAS  PubMed  Google Scholar 

  138. Ren ZP, Hou XB, Tian XD et al (2019) Identification of nine microRNAs as potential biomarkers for lung adenocarcinoma. FEBS Open Bio 9:315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yan H, Xin S, Ma J et al (2018) A three microRNA-based prognostic signature for small cell lung cancer overall survival. J Cell Biochem. https://doi.org/10.1002/jcb.28159

  140. Takashima Y, Kawaguchi A, Iwadate Y et al (2019) MicroRNA signature constituted of miR-30d, miR-93, and miR-181b is a promising prognostic marker in primary central nervous system lymphoma. PLoS One 14:e0210400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sabarimurugan S, Kumarasamy C, Baxi S et al (2019) Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in nasopharyngeal carcinoma. PLoS One 14:e0209760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xiong J, Guo S, Bing Z et al (2018) A comprehensive RNA expression signature for cervical squamous cell carcinoma prognosis. Front Genet 9:696

    Article  CAS  PubMed  Google Scholar 

  143. Hu N, Cheng Z, Pang Y et al (2019) High expression of MiR-98 is a good prognostic factor in acute myeloid leukemia patients treated with chemotherapy alone. J Cancer 10:178–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gao W, Cao Y, Guo P et al (2018) Downregulation of MiR-1297 predicts poor prognosis and enhances gastric cancer cell growth by targeting CREB1. Biomed Pharmacother 105:413–419

    Article  CAS  PubMed  Google Scholar 

  145. Moratin J, Hartmann S, Brands RC et al (2019) MicroRNA expression correlates with disease recurrence and overall survival in oral squamous cell carcinoma. J Craniomaxillofac Surg 47:523–529

    Article  PubMed  Google Scholar 

  146. Chen F, Qi S, Zhang X et al (2018) miR-23a-3p suppresses cell proliferation in oral squamous cell carcinomas by targeting FGF2 and correlates with a better prognosis: miR-23a-3p inhibits OSCC growth by targeting FGF2. Pathol Res Pract 215(4):660–667. https://doi.org/10.1016/j.prp.2018.12.021

    Article  CAS  PubMed  Google Scholar 

  147. Richardsen E, Andersen S, Melbo-Jorgensen C et al (2019) MicroRNA 141 is associated to outcome and aggressive tumor characteristics in prostate cancer. Sci Rep 9:386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Marchesi F, Regazzo G, Palombi F et al (2018) Serum miR-22 as potential non-invasive predictor of poor clinical outcome in newly diagnosed, uniformly treated patients with diffuse large B-cell lymphoma: an explorative pilot study. J Exp Clin Cancer Res 37:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Yan S, Dang G, Zhang X et al (2017) Downregulation of circulating exosomal miR-638 predicts poor prognosis in colon cancer patients. Oncotarget 8:72220–72226

    Article  PubMed  PubMed Central  Google Scholar 

  150. Han G, Qiu N, Luo K et al (2019) Downregulation of miroRNA-141 mediates acquired resistance to trastuzumab and is associated with poor outcome in breast cancer by upregulating the expression of ERBB4. J Cell Biochem. https://doi.org/10.1002/jcb.28416

  151. Valiollahi E, Ribera JM, Genesca E et al (2019) Genome-wide identification of microRNA signatures associated with stem/progenitor cells in Philadelphia chromosome-positive acute lymphoblastic leukemia. Mol Biol Rep 46(1):1295–1306. https://doi.org/10.1007/s11033-019-04600-5

    Article  CAS  PubMed  Google Scholar 

  152. Tsunoda Y, Sasaki A, Sakamoto N et al (2018) Protein expression profile and microRNA expression signature in estrogen receptor-positive and -negative breast cancers: report of two cases. Breast Cancer 10:195–199

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lu JH, Zuo ZX, Wang W et al (2018) A two-microRNA-based signature predicts first-line chemotherapy outcomes in advanced colorectal cancer patients. Cell Death Discov 4:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang Y, Yin W, Lin Y et al (2018) Downregulated circulating microRNAs after surgery: potential noninvasive biomarkers for diagnosis and prognosis of early breast cancer. Cell Death Discov 4:21

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Gill P, Kim E, Chua TC et al (2019) MiRNA-3653 is a potential tissue biomarker for increased metastatic risk in pancreatic neuroendocrine Tumours. Endocr Pathol 30(2):128–133. https://doi.org/10.1007/s12022-019-9570-y

    Article  CAS  PubMed  Google Scholar 

  156. Chen TH, Lee C, Chiu CT et al (2018) Circulating microRNA-196a is an early gastric cancer biomarker. Oncotarget 9:10317–10323

    Article  PubMed  Google Scholar 

  157. Yokoi A, Matsuzaki J, Yamamoto Y et al (2018) Integrated extracellular microRNA profiling for ovarian cancer screening. Nat Commun 9:4319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Jones DZ, Schmidt ML, Suman S et al (2018) Micro-RNA-186-5p inhibition attenuates proliferation, anchorage independent growth and invasion in metastatic prostate cancer cells. BMC Cancer 18:421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Chen F, Zhou H, Wu C et al (2018) Identification of miRNA profiling in prediction of tumor recurrence and progress and bioinformatics analysis for patients with primary esophageal cancer: study based on TCGA database. Pathol Res Pract 214:2081–2086

    Article  CAS  PubMed  Google Scholar 

  160. Dhondt B, De Bleser E, Claeys T et al (2018) Discovery and validation of a serum microRNA signature to characterize oligo- and polymetastatic prostate cancer: not ready for prime time. World J Urol 37(12):2557–2564. https://doi.org/10.1007/s00345-018-2609-8

    Article  CAS  PubMed  Google Scholar 

  161. Adhami M, MotieGhader H, Haghdoost AA et al (2019) Gene co-expression network approach for predicting prognostic microRNA biomarkers in different subtypes of breast cancer. Genomics 112(1):135–143. https://doi.org/10.1016/j.ygeno.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  162. Wong BC, Chiu RW, Tsui NB et al (2005) Circulating placental RNA in maternal plasma is associated with a preponderance of 5′ mRNA fragments: implications for noninvasive prenatal diagnosis and monitoring. Clin Chem 51:1786–1795

    Article  CAS  PubMed  Google Scholar 

  163. Chim SS, Shing TK, Hung EC et al (2008) Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54:482–490

    Article  CAS  PubMed  Google Scholar 

  164. Ng EK, Tsui NB, Lau TK et al (2003) mRNA of placental origin is readily detectable in maternal plasma. Proc Natl Acad Sci U S A 100:4748–4753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pigati L, Yaddanapudi SC, Iyengar R et al (2010) Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One 5:e13515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  168. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kosaka N, Iguchi H, Yoshioka Y et al (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285:17442–17452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Mello-Grand M, Gregnanin I, Sacchetto L et al (2018) Circulating microRNAs combined with PSA for accurate and non-invasive prostate cancer detection. Carcinogenesis 40(2):246–253. https://doi.org/10.1093/carcin/bgy167

    Article  CAS  Google Scholar 

  172. Farran B, Dyson G, Craig D et al (2018) A study of circulating microRNAs identifies a new potential biomarker panel to distinguish aggressive prostate cancer. Carcinogenesis 39:556–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sun Y, Mei H, Xu C et al (2018) Circulating microRNA-339-5p and −21 in plasma as an early detection predictors of lung adenocarcinoma. Pathol Res Pract 214:119–125

    Article  CAS  PubMed  Google Scholar 

  174. Yu H, Guan Z, Cuk K et al (2018) Circulating microRNA biomarkers for lung cancer detection in Western populations. Cancer Med 7:4849–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ebrahimkhani S, Vafaee F, Hallal S et al (2018) Deep sequencing of circulating exosomal microRNA allows non-invasive glioblastoma diagnosis. NPJ Precis Oncol 2:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Usuba W, Urabe F, Yamamoto Y et al (2019) Circulating miRNA panels for specific and early detection in bladder cancer. Cancer Sci 110:408–419

    Article  CAS  PubMed  Google Scholar 

  177. Yu X, Liang J, Xu J et al (2018) Identification and validation of circulating MicroRNA signatures for breast cancer early detection based on large scale tissue-derived data. J Breast Cancer 21:363–370

    Article  PubMed  PubMed Central  Google Scholar 

  178. Zheng D, Ding Y, Ma Q et al (2018) Identification of serum MicroRNAs as novel biomarkers in esophageal squamous cell carcinoma using feature selection algorithms. Front Oncol 8:674

    Article  PubMed  Google Scholar 

  179. Stroese AJ, Ullerich H, Koehler G et al (2018) Circulating microRNA-99 family as liquid biopsy marker in pancreatic adenocarcinoma. J Cancer Res Clin Oncol 144:2377–2390

    Article  CAS  PubMed  Google Scholar 

  180. Alharthi A, Beck D, Howard DR et al (2018) An increased fraction of circulating miR-363 and miR-16 is particle bound in patients with chronic lymphocytic leukaemia as compared to normal subjects. BMC Res Notes 11:280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Swellam M, Hashim M, Mahmoud MS et al (2018) Aberrant expression of some circulating miRNAs in childhood acute lymphoblastic leukemia. Biochem Genet 56:283–294

    Article  CAS  PubMed  Google Scholar 

  182. Jayaraj R, Kumarasamy C, Sabarimurugan S et al (2018) Commentary: blood-derived microRNAs for pancreatic cancer diagnosis: a narrative review and meta-analysis. Front Physiol 9:1896

    Article  PubMed  Google Scholar 

  183. Moshiri F, Salvi A, Gramantieri L et al (2018) Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget 9:15350–15364

    Article  PubMed  PubMed Central  Google Scholar 

  184. Gunel T, Gumusoglu E, Dogan B et al (2018) Potential biomarker of circulating hsa-miR-1273g-3p level for detection of recurrent epithelial ovarian cancer. Arch Gynecol Obstet 298:1173–1180

    Article  CAS  PubMed  Google Scholar 

  185. Bjornetro T, Redalen KR, Meltzer S et al (2019) An experimental strategy unveiling exosomal microRNAs 486-5p, 181a-5p and 30d-5p from hypoxic tumour cells as circulating indicators of high-risk rectal cancer. J Extracell Vesicles 8:1567219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Monterde-Cruz L, Ramirez-Salazar EG, Rico-Martinez G et al (2018) Circulating miR-215-5p and miR-642a-5p as potential biomarker for diagnosis of osteosarcoma in Mexican population. Hum Cell 31:292–299

    Article  CAS  PubMed  Google Scholar 

  187. Weber DG, Brik A, Casjens S et al (2019) Are circulating microRNAs suitable for the early detection of malignant mesothelioma? Results from a nested case-control study. BMC Res Notes 12:77

    Article  PubMed  PubMed Central  Google Scholar 

  188. Lieb V, Weigelt K, Scheinost L et al (2018) Serum levels of miR-320 family members are associated with clinical parameters and diagnosis in prostate cancer patients. Oncotarget 9:10402–10416

    Article  PubMed  Google Scholar 

  189. Guo J, Liu C, Wang W et al (2018) Identification of serum miR-1915-3p and miR-455-3p as biomarkers for breast cancer. PLoS One 13:e0200716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Hesari A, Azizian M, Darabi H et al (2018) Expression of circulating miR-17, miR-25, and miR-133 in breast cancer patients. J Cell Biochem. https://doi.org/10.1002/jcb.27984

  191. Han Y, Liu M, Wang Z et al (2017) Serum MicroRNAs related with Chemoradiotherapy resistance in advanced-stage cervical squamous cell carcinoma. Transl Oncol 10:378–384

    Article  PubMed  PubMed Central  Google Scholar 

  192. Zhou F, Lu X, Zhang X (2018) Serum miR-30c level predicted cardiotoxicity in non-small cell lung cancer patients treated with bevacizumab. Cardiovasc Toxicol 18:284–289

    Article  CAS  PubMed  Google Scholar 

  193. Khalighfard S, Alizadeh AM, Irani S et al (2018) Plasma miR-21, miR-155, miR-10b, and let-7a as the potential biomarkers for the monitoring of breast cancer patients. Sci Rep 8:17981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Fang R, Zhu Y, Hu L et al (2018) Plasma MicroRNA pair panels as novel biomarkers for detection of early stage breast cancer. Front Physiol 9:1879

    Article  PubMed  Google Scholar 

  195. Shah MY, Ferrajoli A, Sood AK et al (2016) microRNA therapeutics in cancer — an emerging concept. EBioMedicine 12:34–42

    Article  PubMed  PubMed Central  Google Scholar 

  196. Yoshino H, Yonemori M, Miyamoto K et al (2017) microRNA-210-3p depletion by CRISPR/Cas9 promoted tumorigenesis through revival of TWIST1 in renal cell carcinoma. Oncotarget 8:20881–20894

    Article  PubMed  PubMed Central  Google Scholar 

  197. Acunzo M, Romano G, Wernicke D et al (2015) MicroRNA and cancer—a brief overview. Adv Biol Regul 57:1–9

    Article  CAS  PubMed  Google Scholar 

  198. Chakraborty C, Sharma AR, Sharma G et al (2018) The novel strategies for next-generation cancer treatment: miRNA combined with chemotherapeutic agents for the treatment of cancer. Oncotarget 9:10164–10174

    Article  PubMed  PubMed Central  Google Scholar 

  199. Di Giorgio A, Tran TPA, Duca M (2016) Small-molecule approaches toward the targeting of oncogenic miRNAs: roadmap for the discovery of RNA modulators. Future Med Chem 8:803–816

    Article  PubMed  CAS  Google Scholar 

  200. Mirihana Arachchilage G, Kharel P, Reid J et al (2018) Targeting of G-Quadruplex harboring pre-miRNA 92b by LNA rescues PTEN expression in NSCL cancer cells. ACS Chem Biol 13:909–914

    Article  CAS  PubMed  Google Scholar 

  201. Ghosh A, Degyatoreva N, Kukielski C et al (2018) Targeting miRNA by tunable small molecule binders: peptidic aminosugar mediated interference in miR-21 biogenesis reverts epithelial to mesenchymal transition. MedChemComm 9:1147–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wang L, Rowe RG, Jaimes A et al (2018) Small-molecule inhibitors disrupt let-7 Oligouridylation and release the selective blockade of let-7 processing by LIN28. Cell Rep 23:3091–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Yuan H-L, Wang T, Zhang K-H (2018) MicroRNAs as potential biomarkers for diagnosis, therapy and prognosis of gastric cancer. Onco Targets Ther 11:3891–3900

    Article  PubMed  PubMed Central  Google Scholar 

  204. Kahraman M, Röske A, Laufer T et al (2018) MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep 8:11584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Mirzaei H, Fathullahzadeh S, Khanmohammadi R et al (2018) State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia. J Cell Physiol 233:888–900

    Article  CAS  PubMed  Google Scholar 

  206. Di C, Zhang Q, Wang Y et al (2018) Exosomes as drug carriers for clinical application. Artif Cells Nanomed Biotechnol 46(sup3):S564–S570. https://doi.org/10.1080/21691401.2018.1501381

    Article  CAS  PubMed  Google Scholar 

  207. Amreddy N, Babu A, Muralidharan R et al (2018) Chapter five - recent advances in nanoparticle-based cancer drug and gene delivery. In: Tew KD, Fisher PB (eds) Advances in cancer research. Academic press, Cambridge, pp 115–170

    Google Scholar 

  208. Wang K, Kievit FM, Zhang M (2016) Nanoparticles for cancer gene therapy: recent advances, challenges, and strategies. Pharmacol Res 114:56–66

    Article  CAS  PubMed  Google Scholar 

  209. Liu J, Meng T, Yuan M et al (2016) MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 11:6713–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang F, Zhang L, Bai X et al (2018) Stimuli-responsive Nanocarrier for co-delivery of MiR-31 and doxorubicin to suppress high MtEF4 cancer. ACS Appl Mater Interfaces 10:22767–22775

    Article  CAS  PubMed  Google Scholar 

  211. Zhang T, Xue X, He D et al (2015) A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Lett 365:156–165

    Article  CAS  PubMed  Google Scholar 

  212. Sabolch A, Else T, Griffith KA et al (2015) Adjuvant radiation therapy improves local control after surgical resection in patients with localized adrenocortical carcinoma. Int J Radiat Oncol Biol Phys 92:252–259

    Article  PubMed  Google Scholar 

  213. Jacquet E, Lardy-Cléaud A, Pistilli B et al (2018) Endocrine therapy or chemotherapy as first-line therapy in hormone receptor–positive HER2-negative metastatic breast cancer patients. Eur J Cancer 95:93–101

    Article  CAS  PubMed  Google Scholar 

  214. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  215. Zhao L, Qi Y, Xu L et al (2018) MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol 15:284–296

    Article  CAS  PubMed  Google Scholar 

  216. Gioffre S, Ricci V, Vavassori C et al (2019) Plasmatic and chamber-specific modulation of cardiac microRNAs in an acute model of DOX-induced cardiotoxicity. Biomed Pharmacother 110:1–8

    Article  CAS  PubMed  Google Scholar 

  217. Beg MS, Brenner AJ, Sachdev J et al (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs 35:180–188

    Article  CAS  Google Scholar 

  218. van Zandwijk N, Pavlakis N, Kao SC et al (2017) Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18:1386–1396

    Article  PubMed  Google Scholar 

  219. Akgül B, Stadler PF, Hawkins LJ, Hadj-Moussa H, Storey KB, Ergin K, Çetinkaya R, Paschoal AR, Nachtigall PG, Tutar Y, Yousef M, Allmer J (2021) 44 Current challenges in miRNomics. In: Allmer J, Yousef M (eds) miRNomics: microRNA biology and computational analysis. Methods in molecular biology, vol 2257. Springer, New York

    Google Scholar 

  220. Li P, Yang X, Cheng Y et al (2017) MicroRNA-218 increases the sensitivity of bladder cancer to cisplatin by targeting Glut1. Cell Physiol Biochem 41:921–932

    Article  CAS  PubMed  Google Scholar 

  221. Xu J, Gu X, Yang X et al (2019) MiR-1204 promotes ovarian squamous cell carcinoma growth by increasing glucose uptake. Biosci Biotechnol Biochem 83:123–128

    Article  PubMed  CAS  Google Scholar 

  222. Yamasaki T, Seki N, Yoshino H et al (2013) Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci 104:1411–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Liu W, Kang L, Han J et al (2018) miR-342-3p suppresses hepatocellular carcinoma proliferation through inhibition of IGF-1R-mediated Warburg effect. Onco Targets Ther 11:1643–1653

    Article  PubMed  PubMed Central  Google Scholar 

  224. Xiao M, Lou C, Xiao H et al (2018) MiR-128 regulation of glucose metabolism and cell proliferation in triple-negative breast cancer. Br J Surg 105:75–85

    Article  CAS  PubMed  Google Scholar 

  225. Guo H, Nan Y, Zhen Y et al (2016) miRNA-451 inhibits glioma cell proliferation and invasion by downregulating glucose transporter 1. Tumor Biol 37:13751–13761

    Article  CAS  Google Scholar 

  226. Zhu W, Huang Y, Pan Q et al (2017) MicroRNA-98 suppress Warburg effect by targeting HK2 in colon cancer cells. Dig Dis Sci 62:660–668

    Article  CAS  PubMed  Google Scholar 

  227. Zhao X, Lu C, Chu W et al (2017) MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Tumour Biol 39:1010428317706215

    PubMed  Google Scholar 

  228. Zhang K, Zhang M, Jiang H et al (2018) Down-regulation of miR-214 inhibits proliferation and glycolysis in non–small-cell lung cancer cells via down-regulating the expression of hexokinase 2 and pyruvate kinase isozyme M2. Biomed Pharmacother 105:545–552

    Article  CAS  PubMed  Google Scholar 

  229. Jin F, Wang Y, Zhu Y et al (2017) The miR-125a/HK2 axis regulates cancer cell energy metabolism reprogramming in hepatocellular carcinoma. Sci Rep 7:3089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Liu W, Zhou Z, Zhang Q et al (2019) Overexpression of miR-1258 inhibits cell proliferation by targeting AKT3 in osteosarcoma. Biochem Biophys Res Commun 510:479–486

    Article  CAS  PubMed  Google Scholar 

  231. Wei D, Shen B, Wang W et al (2019) MicroRNA199a5p functions as a tumor suppressor in oral squamous cell carcinoma via targeting the IKKbeta/NFkappaB signaling pathway. Int J Mol Med 43(4):1585–1596. https://doi.org/10.3892/ijmm.2019.4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Li J, Zou K, Yu L et al (2018) MicroRNA-140 inhibits the epithelial-mesenchymal transition and metastasis in colorectal cancer. Mol Ther Nucleic Acids 10:426–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Ma Y, Sun Y (2019) miR-29a-3p inhibits growth, proliferation, and invasion of papillary thyroid carcinoma by suppressing NF-kappaB signaling via direct targeting of OTUB2. Cancer Manag Res 11:13–23

    Article  CAS  PubMed  Google Scholar 

  234. Ma L, Chen X, Li C et al (2018) miR-129-5p and -3p co-target WWP1 to suppress gastric cancer proliferation and migration. J Cell Biochem. https://doi.org/10.1002/jcb.28027

  235. Nie X, Su Z, Yan R et al (2019) MicroRNA-562 negatively regulated c-MET/AKT pathway in the growth of glioblastoma cells. Onco Targets Ther 12:41–49

    Article  CAS  PubMed  Google Scholar 

  236. Yu JG, Ji CH, Shi MH (2018) MicroRNA-26b suppresses tumorigenicity and promotes apoptosis in small cell lung cancer cells by targeting myeloid cell leukemia 1 protein. Kaohsiung J Med Sci 34:593–605

    Article  PubMed  Google Scholar 

  237. Ma C-h, Zhang Y-x, Tang L-h et al (2018) MicroRNA-1469, a p53-responsive microRNA promotes Genistein induced apoptosis by targeting Mcl1 in human laryngeal cancer cells. Biomed Pharmacother 106:665–671

    Article  CAS  PubMed  Google Scholar 

  238. Gu J, Liu X, Li J et al (2019) MicroRNA-144 inhibits cell proliferation, migration and invasion in human hepatocellular carcinoma by targeting CCNB1. Cancer Cell Int 19:15

    Article  PubMed  PubMed Central  Google Scholar 

  239. Yang Q (2019) MicroRNA-5195-3p plays a suppressive role in cell proliferation, migration and invasion by targeting MYO6 in human non-small cell lung cancer. Biosci Biotechnol Biochem 83:212–220

    Article  CAS  PubMed  Google Scholar 

  240. Liu X, Zhang L, Tong Y et al (2019) MicroRNA-22 inhibits proliferation, invasion and metastasis of breast cancer cells through targeting truncated neurokinin-1 receptor and ERalpha. Life Sci 217:57–69

    Article  CAS  PubMed  Google Scholar 

  241. Jiang M, Shi L, Yang C et al (2019) miR-1254 inhibits cell proliferation, migration, and invasion by down-regulating Smurf1 in gastric cancer. Cell Death Dis 10:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Ma Y, Li X, Chen S et al (2019) MicroRNA-4458 suppresses migration and epithelial-mesenchymal transition via targeting HMGA1 in non–small-cell lung cancer cells. Cancer Manag Res 11:637–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wu H, Liu HY, Liu WJ et al (2018) miR-377-5p inhibits lung cancer cell proliferation, invasion, and cell cycle progression by targeting AKT1 signaling. J Cell Biochem. https://doi.org/10.1002/jcb.28091

  244. Xie Q, Yu Z, Lu Y et al (2018) microRNA-148a-3p inhibited the proliferation and epithelial-mesenchymal transition progression of non–small-cell lung cancer via modulating Ras/MAPK/Erk signaling. J Cell Physiol 234(8):12786–12799. https://doi.org/10.1002/jcp.27899

    Article  CAS  PubMed  Google Scholar 

  245. Zhang W, Qian S, Yang G et al (2018) MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma. Gene 659:22–28

    Article  CAS  PubMed  Google Scholar 

  246. Wu W, He K, Guo Q et al (2019) SSRP1 promotes colorectal cancer progression and is negatively regulated by miR-28-5p. J Cell Mol Med 23(5):3118–3129. https://doi.org/10.1111/jcmm.14134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Xing F, Song Z, He Y (2018) MiR-219-5p inhibits growth and metastasis of ovarian cancer cells by targeting HMGA2. Biol Res 51:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Ren Y, Zhang H, Jiang P (2018) MicroRNA-382 inhibits cell growth and migration in colorectal cancer by targeting SP1. Biol Res 51:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Jiang F, Yu Q, Chu Y et al (2019) MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1. Int J Oncol 54:128–138

    CAS  PubMed  Google Scholar 

  250. Ai H, Zhou W, Wang Z et al (2018) microRNAs-107 inhibited autophagy, proliferation, and migration of breast cancer cells by targeting HMGB1. J Cell Biochem. https://doi.org/10.1002/jcb.28157

  251. Zhu H, Cao XX, Liu J et al (2019) MicroRNA-488 inhibits endometrial glandular epithelial cell proliferation, migration, and invasion in endometriosis mice via Wnt by inhibiting FZD7. J Cell Mol Med 23(4):2419–2430. https://doi.org/10.1111/jcmm.14078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Yang X, Wang L, Wang Q et al (2018) MiR-183 inhibits osteosarcoma cell growth and invasion by regulating LRP6-Wnt/beta-catenin signaling pathway. Biochem Biophys Res Commun 496:1197–1203

    Article  CAS  PubMed  Google Scholar 

  253. Shirafkan N, Shomali N, Kazemi T et al (2018) microRNA-193a-5p inhibits migration of human HT-29 colon cancer cells via suppression of metastasis pathway. J Cell Biochem. https://doi.org/10.1002/jcb.28164

  254. Wang T, Hou J, Jian S et al (2018) miR-29b negatively regulates MMP2 to impact gastric cancer development by suppress gastric cancer cell migration and tumor growth. J Cancer 9:3776–3786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Schwarzenbacher D, Klec C, Pasculli B et al (2019) MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer Res 21:20

    Article  PubMed  PubMed Central  Google Scholar 

  256. Qin H, Liu W (2019) MicroRNA-99a-5p suppresses breast cancer progression and cell-cycle pathway through downregulating CDC25A. J Cell Physiol 234:3526–3537

    Article  CAS  PubMed  Google Scholar 

  257. Zheng YF, Luo J, Gan GL et al (2019) Overexpression of microRNA-98 inhibits cell proliferation and promotes cell apoptosis via claudin-1 in human colorectal carcinoma. J Cell Biochem 120:6090–6105

    Article  CAS  PubMed  Google Scholar 

  258. Ye CY, Zheng CP, Ying WW et al (2018) Up-regulation of microRNA-497 inhibits the proliferation, migration and invasion but increases the apoptosis of multiple myeloma cells through the MAPK/ERK signaling pathway by targeting Raf-1. Cell Cycle 17(24):2666–2683. https://doi.org/10.1080/15384101.2018.1542895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Li L, Shao MY, Zou SC et al (2019) MiR-101-3p inhibits EMT to attenuate proliferation and metastasis in glioblastoma by targeting TRIM44. J Neuro-Oncol 141:19–30

    Article  CAS  Google Scholar 

  260. Xing F, Wang S, Zhou J (2019) The expression of MicroRNA-598 inhibits ovarian cancer cell proliferation and metastasis by targeting URI. Mol Ther Oncolytics 12:9–15

    Article  CAS  PubMed  Google Scholar 

  261. Yao R, Zheng H, Wu L et al (2018) miRNA-641 inhibits the proliferation, migration, and invasion and induces apoptosis of cervical cancer cells by directly targeting ZEB1. Onco Targets Ther 11:8965–8976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Luo P, Wang Q, Ye Y et al (2019) MiR-223-3p functions as a tumor suppressor in lung squamous cell carcinoma by miR-223-3p-mutant p53 regulatory feedback loop. J Exp Clin Cancer Res 38:74

    Article  PubMed  PubMed Central  Google Scholar 

  263. Sun Y, Hu B, Wang Y et al (2018) miR-216a-5p inhibits malignant progression in small cell lung cancer: involvement of the Bcl-2 family proteins. Cancer Manag Res 10:4735–4745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Yin W, Shi L, Mao Y (2019) MiR-194 regulates nasopharyngeal carcinoma progression by modulating MAP3K3 expression. FEBS Open Bio 9:43–52

    Article  CAS  PubMed  Google Scholar 

  265. Kong X, Zhang J, Li J et al (2018) MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells. Biochem Biophys Res Commun 501:486–493

    Article  CAS  PubMed  Google Scholar 

  266. Hua CB, Song SB, Ma HL et al (2019) MiR-1-5p is down-regulated in gallbladder carcinoma and suppresses cell proliferation, migration and invasion by targeting Notch2. Pathol Res Pract 215:200–208

    Article  CAS  PubMed  Google Scholar 

  267. Zhou Y, Zheng X, Chen LJ et al (2019) microRNA-181b suppresses the metastasis of lung cancer cells by targeting sex determining region Y-related high mobility group-box 6 (Sox6). Pathol Res Pract 215:335–342

    Article  CAS  PubMed  Google Scholar 

  268. Feng C, Xian Q, Liu S (2018) Micro RNA-518 inhibits gastric cancer cell growth by inducing apoptosis via targeting MDM2. Biomed Pharmacother 97:1595–1602

    Article  CAS  PubMed  Google Scholar 

  269. Zhang Y, Zhang D, Lv J et al (2018) MiR-125a-5p suppresses bladder cancer progression through targeting FUT4. Biomed Pharmacother 108:1039–1047

    Article  CAS  PubMed  Google Scholar 

  270. Cao XZ, Bin H, Zang ZN (2019) MiR-128 suppresses the growth of thyroid carcinoma by negatively regulating SPHK1. Biomed Pharmacother 109:1960–1966

    Article  CAS  PubMed  Google Scholar 

  271. Zhang L, Wang Y, Wang L et al (2018) miR-23c suppresses tumor growth of human hepatocellular carcinoma by attenuating ERBB2IP. Biomed Pharmacother 107:424–432

    Article  CAS  PubMed  Google Scholar 

  272. Zeng W, Zhu JF, Liu JY et al (2018) miR-133b inhibits cell proliferation, migration and invasion of esophageal squamous cell carcinoma by targeting EGFR. Biomed Pharmacother 111:476–484

    Article  PubMed  CAS  Google Scholar 

  273. Li L, Wang X, Liu D (2019) MicroRNA-185 inhibits proliferation, migration and invasion in human osteosarcoma MG63 cells by targeting vesicle-associated membrane protein 2. Gene 696:80–87

    Article  CAS  PubMed  Google Scholar 

  274. Gao S, Zhao Z, Wu R et al (2019) MiR-1 inhibits prostate cancer PC3 cells proliferation through the Akt/mTOR signaling pathway by binding to c-met. Biomed Pharmacother 109:1406–1410

    Article  CAS  PubMed  Google Scholar 

  275. Sun KK, Shen XJ, Yang D et al (2019) MicroRNA-31 triggers G2/M cell cycle arrest, enhances the chemosensitivity and inhibits migration and invasion of human gastric cancer cells by downregulating the expression of zeste homolog 2 (ZH2). Arch Biochem Biophys 663:269–275

    Article  CAS  PubMed  Google Scholar 

  276. Gu B, Wang J, Song Y et al (2018) microRNA-383 regulates cell viability and apoptosis by mediating Wnt/beta-catenin signaling pathway in non-small cell lung cancer. J Cell Biochem. https://doi.org/10.1002/jcb.28069

  277. Wang L, Sun J, Cao H (2019) MicroRNA-384 regulates cell proliferation and apoptosis through directly targeting WISP1 in laryngeal cancer. J Cell Biochem 120:3018–3026

    Article  CAS  PubMed  Google Scholar 

  278. Wang J, Wang B, Ren H et al (2019) miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1. Biochem Biophys Res Commun 509:241–248

    Article  CAS  PubMed  Google Scholar 

  279. Yang H, Sui Y, Guo X et al (2018) Endostar continuous intravenous infusion combined with S-1 and oxaliplatin chemotherapy could be effective in treating liver metastasis from gastric cancer. J Cancer Res Ther 14:S1148–S1151

    Article  CAS  PubMed  Google Scholar 

  280. Fu Y, Meng Y, Gu X et al (2019) miR-503 expression is downregulated in cervical cancer and suppresses tumor growth by targeting AKT2. J Cell Biochem. https://doi.org/10.1002/jcb.28099

  281. Zhou Y, Liu K, Liu Y et al (2018) MicroRNA-34a inhibit hepatocellular carcinoma progression by repressing hexokinase-1. J Cell Biochem. https://doi.org/10.1002/jcb.27988

  282. Lv ZD, Xin HN, Yang ZC et al (2019) miR-135b promotes proliferation and metastasis by targeting APC in triple-negative breast cancer. J Cell Physiol 234(7):10819–10826. https://doi.org/10.1002/jcp.27906

    Article  CAS  PubMed  Google Scholar 

  283. Nie W, Ni D, Ma X et al (2019) miR122 promotes proliferation and invasion of clear cell renal cell carcinoma by suppressing Forkhead box O3. Int J Oncol 54:559–571

    CAS  PubMed  Google Scholar 

  284. Zhou J, Zhang C, Zhou B et al (2019) miR-183 modulated cell proliferation and apoptosis in ovarian cancer through the TGF-beta/Smad4 signaling pathway. Int J Mol Med 43(4):1734–1746. https://doi.org/10.3892/ijmm.2019.4082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Zhu Y, Li L, Hou D et al (2019) MicroRNA-19a regulates the proliferation, migration and invasion of human gastric cancer cells by targeting CUL5. Arch Biochem Biophys 662:93–100

    Article  CAS  PubMed  Google Scholar 

  286. Fan Y, Che X, Hou K et al (2018) MiR-940 promotes the proliferation and migration of gastric cancer cells through up-regulation of programmed death ligand-1 expression. Exp Cell Res 373:180–187

    Article  CAS  PubMed  Google Scholar 

  287. Zhou H, Liu H, Jiang M et al (2019) Targeting MicroRNA-21 suppresses gastric cancer cell proliferation and migration via PTEN/Akt signaling axis. Cell Transplant 28(3):306–317. https://doi.org/10.1177/0963689719825573

    Article  PubMed  PubMed Central  Google Scholar 

  288. Li Y, Sun D, Gao J et al (2018) MicroRNA-373 promotes the development of endometrial cancer by targeting LATS2 and activating the Wnt/beta-catenin pathway. J Cell Biochem. https://doi.org/10.1002/jcb.28149

  289. Xin H, Wang C, Liu Z (2019) miR-196a-5p promotes metastasis of colorectal cancer via targeting IkappaBalpha. BMC Cancer 19:30

    Article  PubMed  PubMed Central  Google Scholar 

  290. Zhou Q, Dong J, Luo R et al (2019) MicroRNA-20a regulates cell proliferation, apoptosis and autophagy by targeting thrombospondin 2 in cervical cancer. Eur J Pharmacol 844:102–109

    Article  CAS  PubMed  Google Scholar 

  291. Deng YH, Deng ZH, Hao H et al (2018) MicroRNA-23a promotes colorectal cancer cell survival by targeting PDK4. Exp Cell Res 373:171–179

    Article  CAS  PubMed  Google Scholar 

  292. Tao J, Liu Z, Wang Y et al (2019) MicroRNA-645 represses hepatocellular carcinoma progression by inhibiting SOX30-mediated p53 transcriptional activation. Int J Biol Macromol 121:214–222

    Article  CAS  PubMed  Google Scholar 

  293. Hu J, Ruan J, Liu X et al (2018) MicroRNA-301a-3p suppressed the progression of hepatocellular carcinoma via targeting VGLL4. Pathol Res Pract 214:2039–2045

    Article  CAS  PubMed  Google Scholar 

  294. Wu D, Zhang H, Ji F et al (2019) MicroRNA-17 promotes osteosarcoma cells proliferation and migration and inhibits apoptosis by regulating SASH1 expression. Pathol Res Pract 215:115–120

    Article  CAS  PubMed  Google Scholar 

  295. Lin H, Lin T, Lin J et al (2019) Inhibition of miR-423-5p suppressed prostate cancer through targeting GRIM-19. Gene 688:93–97

    Article  CAS  PubMed  Google Scholar 

  296. Fan H, Yuan R, Cheng S et al (2018) Overexpressed miR-183 promoted glioblastoma radioresistance via down-regulating LRIG1. Biomed Pharmacother 97:1554–1563

    Article  CAS  PubMed  Google Scholar 

  297. Guanen Q, Junjie S, Baolin W et al (2018) MiR-214 promotes cell meastasis and inhibites apoptosis of esophageal squamous cell carcinoma via PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 105:350–361

    Article  PubMed  CAS  Google Scholar 

  298. Jiang M, Zhou LY, Xu N et al (2018) Down-regulation of miR-500 and miR-628 suppress non-small cell lung cancer proliferation, migration and invasion by targeting ING1. Biomed Pharmacother 108:1628–1639

    Article  CAS  PubMed  Google Scholar 

  299. Yi T, Zhou X, Sang K et al (2019) MicroRNA-1270 modulates papillary thyroid cancer cell development by regulating SCAI. Biomed Pharmacother 109:2357–2364

    Article  CAS  PubMed  Google Scholar 

  300. Zhu J, Han S (2019) miR-150-5p promotes the proliferation and epithelial-mesenchymal transition of cervical carcinoma cells via targeting SRCIN1. Pathol Res Pract 215(4):738–747. https://doi.org/10.1016/j.prp.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  301. Xie S, Liu G, Huang J et al (2019) miR-210 promotes lung adenocarcinoma proliferation, migration, and invasion by targeting lysyl oxidase-like 4. J Cell Physiol 234(8):14050–14057. https://doi.org/10.1002/jcp.28093

    Article  CAS  PubMed  Google Scholar 

  302. Hu XH, Zhao ZX, Dai J et al (2019) MicroRNA-221 regulates osteosarcoma cell proliferation, apoptosis, migration, and invasion by targeting CDKN1B/p27. J Cell Biochem 120:4665–4674

    Article  CAS  PubMed  Google Scholar 

  303. Sanches JGP, Xu Y, Yabasin IB et al (2018) miR-501 is upregulated in cervical cancer and promotes cell proliferation, migration and invasion by targeting CYLD. Chem Biol Interact 285:85–95

    Article  CAS  PubMed  Google Scholar 

  304. Yuan Q, Zhang Y, Li J et al (2018) High expression of microRNA-4295 contributes to cell proliferation and invasion of pancreatic ductal adenocarcinoma by the down-regulation of Glypican-5. Biochem Biophys Res Commun 497:73–79

    Article  CAS  PubMed  Google Scholar 

  305. Song J, Ma Q, Hu M et al (2018) The inhibition of miR-144-3p on cell proliferation and metastasis by targeting TOP2A in HCMV-positive glioblastoma cells. Molecules 23:3259

    Article  PubMed Central  CAS  Google Scholar 

  306. Liu Q, Chen J, Wang B et al (2018) miR-145 modulates epithelial-mesenchymal transition and invasion by targeting ZEB2 in non-small cell lung cancer cell lines. J Cell Biochem. https://doi.org/10.1002/jcb.28126

  307. Zheng XM, Zhang P, Liu MH et al (2019) MicroRNA-30e inhibits adhesion, migration, invasion and cell cycle progression of prostate cancer cells via inhibition of the activation of the MAPK signaling pathway by downregulating CHRM3. Int J Oncol 54:443–454

    CAS  PubMed  Google Scholar 

  308. Zhou X, Xu M, Guo Y et al (2018) MicroRNA-588 regulates invasion, migration and epithelial-mesenchymal transition via targeting EIF5A2 pathway in gastric cancer. Cancer Manag Res 10:5187–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Feng L, Jing L, Han J et al (2018) MicroRNA 486-3p directly targets BIK and regulates apoptosis and invasion in colorectal cancer cells. Onco Targets Ther 11:8791–8801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Yang L, Zhang S, Guo K et al (2019) miR-125a restrains cell migration and invasion by targeting STAT3 in gastric cancer cells. Onco Targets Ther 12:205–215

    Article  PubMed  Google Scholar 

  311. Zhang H, Jiang S, Guo L et al (2019) MicroRNA-1258, regulated by c-Myb, inhibits growth and epithelial-to-mesenchymal transition phenotype via targeting SP1 in oral squamous cell carcinoma. J Cell Mol Med 23(4):2813–2821. https://doi.org/10.1111/jcmm.14189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Hu Y, Wu AY, Xu C et al (2019) MicroRNA-449a inhibits tumor metastasis through AKT/ERK1/2 inactivation by targeting steroid receptor coactivator (SRC) in endometrial cancer. J Cancer 10:547–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Li G, Xu Y, Wang S et al (2019) MiR-873-5p inhibits cell migration, invasion and epithelial-mesenchymal transition in colorectal cancer via targeting ZEB1. Pathol Res Pract 215:34–39

    Article  CAS  PubMed  Google Scholar 

  314. Ma W, Liu B, Li J et al (2018) MicroRNA-302c represses epithelial-mesenchymal transition and metastasis by targeting transcription factor AP-4 in colorectal cancer. Biomed Pharmacother 105:670–676

    Article  CAS  PubMed  Google Scholar 

  315. Yang B, Zhang W, Sun D et al (2019) Downregulation of miR-139-5p promotes prostate cancer progression through regulation of SOX5. Biomed Pharmacother 109:2128–2135

    Article  CAS  PubMed  Google Scholar 

  316. Zhang X, Zhou J, Xue D et al (2019) MiR-515-5p acts as a tumor suppressor via targeting TRIP13 in prostate cancer. Int J Biol Macromol 129:227–232

    Article  CAS  PubMed  Google Scholar 

  317. Xie X, Pan J, Han X et al (2019) Downregulation of microRNA-532-5p promotes the proliferation and invasion of bladder cancer cells through promotion of HMGB3/Wnt/beta-catenin signaling. Chem Biol Interact 300:73–81

    Article  CAS  PubMed  Google Scholar 

  318. Cui Z, Zhao Y (2019) microRNA-342-3p targets FOXQ1 to suppress the aggressive phenotype of nasopharyngeal carcinoma cells. BMC Cancer 19:104

    Article  PubMed  PubMed Central  Google Scholar 

  319. Wang D, Bao F, Teng Y et al (2019) MicroRNA-506-3p initiates mesenchymal-to-epithelial transition and suppresses autophagy in osteosarcoma cells by directly targeting SPHK1. Biosci Biotechnol Biochem 83(5):836–844. https://doi.org/10.1080/09168451.2019.1569496

    Article  CAS  PubMed  Google Scholar 

  320. Jiang H, Bu Q, Zeng M et al (2019) MicroRNA-93 promotes bladder cancer proliferation and invasion by targeting PEDF. Urol Oncol 37:150–157

    Article  CAS  PubMed  Google Scholar 

  321. He H, Liao X, Yang Q et al (2018) MicroRNA-494-3p promotes cell growth, migration, and invasion of nasopharyngeal carcinoma by targeting Sox7. Technol Cancer Res Treat 17:1533033818809993

    CAS  PubMed  PubMed Central  Google Scholar 

  322. He H, Zhao X, Zhu Z et al (2019) MicroRNA-3191 promotes migration and invasion by downregulating TGFBR2 in colorectal cancer. J Biochem Mol Toxicol 33(6):e22308. https://doi.org/10.1002/jbt.22308

    Article  CAS  PubMed  Google Scholar 

  323. Wang Y, Yang Z, Wang L et al (2019) miR-532-3p promotes hepatocellular carcinoma progression by targeting PTPRT. Biomed Pharmacother 109:991–999

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Baran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Uzuner, E., Ulu, G.T., Gürler, S.B., Baran, Y. (2022). The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. In: Allmer, J., Yousef, M. (eds) miRNomics. Methods in Molecular Biology, vol 2257. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1170-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1170-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1169-2

  • Online ISBN: 978-1-0716-1170-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics