Skip to main content

The Emerging Pro-Algesic Profile of Transient Receptor Potential Vanilloid Type 4

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 186))

  • 536 Accesses

Abstract

Transient receptor potential vanilloid type 4 (TRPV4) channels are Ca2+-permeable non-selective cation channels which mediate a wide range of physiological functions and are activated and modulated by a diverse array of stimuli. One of this ion channel’s least discussed functions is in relation to the generation and maintenance of certain pain sensations. However, in the two decades which have elapsed since the identification of this ion channel, considerable data has emerged concerning its function in mediating pain sensations. TRPV4 is a mediator of mechanical hyperalgesia in the various contexts in which a mechanical stimulus, comprising trauma (at the macro-level) or discrete extracellular pressure or stress (at the micro-level), results in pain. TRPV4 is also recognised as constituting an essential component in mediating inflammatory pain. It also plays a role in relation to many forms of neuropathic-type pain, where it functions in mediating mechanical allodynia and hyperalgesia.

Here, we review the role of TRPV4 in mediating pain sensations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alessandri-Haber N, Yeh JJ, Boyd AE et al (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 3:497–511

    Article  Google Scholar 

  • Alessandri-Haber N, Dina OA, Yeh JJ et al (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24:4444–4452

    Article  CAS  Google Scholar 

  • Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD (2005) TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118:70–79

    Article  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Joseph EK et al (2006) A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci 26:3864–3874

    Article  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Joseph EK et al (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 28:1046–1057

    Article  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Chen X, Levine JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29:6217–6228

    Article  CAS  Google Scholar 

  • Bakri MM, Yahya F, Munawar KMM (2018) Transient receptor potential vanilloid 4 (TRPV4) expression on the nerve fibers of human dental pulp is upregulated under inflammatory condition. Arch Oral Biol 89:94–98

    Article  CAS  Google Scholar 

  • Balemans D, Aguilera-Lizarraga J, Florens MV et al (2019) Histamine-mediated potentiation of transient receptor potential (TRP) ankyrin 1 and TRP vanilloid 4 signaling in submucosal neurons in patients with irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 316:G338–G349

    Article  CAS  Google Scholar 

  • Baratchi S, Keov P, Darby WG et al (2019) The TRPV4 agonist GSK1016790A regulates the membrane expression of TRPV4 channels. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00006

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  • Becker D, Bereiter-Hahn J, Jendrach M (2009) Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol 88:141–152

    Article  CAS  Google Scholar 

  • Beraldo WT, Andrade SP (1997) Discovery of bradykinin and the kallikrein-kinin system. In: Farmer SG (ed) The kinin system. Academic Press, San Diego

    Google Scholar 

  • Berna-Erro A, Izquierdo-Serra M, Sepúlveda RV et al (2017) Structural determinants of 5′,6′-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep 7:10522

    Article  Google Scholar 

  • Boehmerle W, Huehnchen P, Lee SLL et al (2018) TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models. Exp Neurol 306:64–75

    Article  CAS  Google Scholar 

  • Brierley SM, Page AJ, Hughes PA et al (2008) Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134:2059–2069

    Article  CAS  Google Scholar 

  • Cao DS, Yu SQ, Premkumar LS (2009) Modulation of transient receptor potential Vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain 10:5

    Google Scholar 

  • Carlton SM (2014) Nociceptive primary afferents: they have a mind of their own. J Physiol 592:3403–3411

    Article  CAS  Google Scholar 

  • Cenac N, Bautzova T, Le Faouder P (2015) Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology 149:433–44.e7

    Article  CAS  Google Scholar 

  • Ceppa E, Cattaruzza F, Lyo V et al (2010) Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice. Am J Physiol Gastrointest Liver Physiol 299:G556–G571

    Article  CAS  Google Scholar 

  • Chen X, Alessandri-Haber N, Levine JD (2007) Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4−/− mice. Mol Pain 3:31

    Article  Google Scholar 

  • Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–451

    Article  CAS  Google Scholar 

  • Chen Y, Williams SH, McNulty AL et al (2013) Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion. Pain 154:1295–1304

    Article  CAS  Google Scholar 

  • Chen Y, Kanju P, Fang Q et al (2014) TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain 155:2662–2672

    Article  CAS  Google Scholar 

  • Chen JY, Kubo A, Shinoda M, Okada-Ogawa A et al (2020) Involvement of TRPV4 ionotropic channel in tongue mechanical hypersensitivity in dry-tongue rats. J Oral Sci 62:13–17

    Article  CAS  Google Scholar 

  • Chen Y, Wang ZL, Yeo M et al (2021) Epithelia-sensory neuron cross talk underlies cholestatic itch induced by lysophosphatidylcholine. Gastroenterology 161:301–317.e16

    Article  CAS  Google Scholar 

  • Choi G, Yang TJ, Yoo S (2019) TRPV4-mediated anti-nociceptive effect of suberanilohydroxamic acid on mechanical pain. Mol Neurobiol 56:444–453

    Article  CAS  Google Scholar 

  • Costa R, Motta EM, Dutra RC et al (2011) Anti-nociceptive effect of kinin B1 and B2 receptor antagonists on peripheral neuropathy induced by paclitaxel in mice. Br J Pharmacol 164:681–693

    Article  CAS  Google Scholar 

  • Costa R, Bicca MA, Manjavachi MN et al (2018) Kinin receptors sensitize TRPV4 channel and induce mechanical hyperalgesia: relevance to paclitaxel-induced peripheral neuropathy in mice. Mol Neurobiol 55:2150–2161

    Article  CAS  Google Scholar 

  • Coste B, Mathur J, Schmidt M (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    Article  CAS  Google Scholar 

  • Cuajungco MP, Grimm C, Oshima K et al (2006) PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 281:18753–18762

    Article  CAS  Google Scholar 

  • Cui YY, Li MY, Li YT et al (2020) Expression and functional characterization of transient receptor potential vanilloid 4 in the dorsal root ganglion and spinal cord of diabetic rats with mechanical allodynia. Brain Res Bull 162:30–39

    Article  CAS  Google Scholar 

  • Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    Article  CAS  Google Scholar 

  • De Logu F, Trevisan G, Marone IM et al (2020) Oxidative stress mediates thalidomide-induced pain by targeting peripheral TRPA1 and central TRPV4. BMC Biol 18:197

    Article  Google Scholar 

  • Denadai-Souza A, Martin L, de Paula MA et al (2012) Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis Rheum 64:1848–1858

    Article  CAS  Google Scholar 

  • Dias FC, Alves VS, Matias DO (2019) The selective TRPV4 channel antagonist HC-067047 attenuates mechanical allodynia in diabetic mice. Eur J Pharmacol 856:172408

    Article  CAS  Google Scholar 

  • Ding XL, Wang YH, Ning LP et al (2010) Involvement of TRPV4-NO-cGMP-PKG pathways in the development of thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 208:194–201

    Article  CAS  Google Scholar 

  • Dunn KM, Hill-Eubanks DC, Liedtke WB et al (2013) TRPV4 channels stimulate Ca2+−induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci U S A 110:6157–6162

    Article  CAS  Google Scholar 

  • Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270–1279

    Article  CAS  Google Scholar 

  • Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol 103:2–17

    Article  CAS  Google Scholar 

  • Fan HC, Zhang X, McNaughton PA (2009) Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284:27884–27891

    Article  CAS  Google Scholar 

  • Fan X, Wang C, Han J et al (2021) Role of TRPV4-P2X7 pathway in neuropathic pain in rats with chronic compression of the dorsal root ganglion. Neurochem Res 46:2143–2153

    Article  CAS  Google Scholar 

  • Fernandes J, Lorenzo IM, Andrade YN et al (2008) IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5′-6′-epoxyeicosatrienoic acid. J Cell Biol 81:143–155

    Article  Google Scholar 

  • Fuertes G, Giménez D, Esteban-Martin S et al (2010) Role of membrane lipids for the activity of pore forming peptides and proteins. Adv Exp Med Biol 677:31–55

    Article  CAS  Google Scholar 

  • Gao F, Wang DH (2010) Hypotension induced by activation of the transient receptor potential vanilloid 4 channels: role of Ca2+-activated K+ channels and sensory nerves. J Hypertens 28:102–110

    Article  CAS  Google Scholar 

  • Gao X, Wu L, O'Neil RG (2003) Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278:27129–27137

    Article  CAS  Google Scholar 

  • Garcia-Elias A, Mrkonjic S, Pardo-Pastor C et al (2013) Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci U S A 110:9553–9558

    Article  CAS  Google Scholar 

  • Grant AD, Cottrell GS, Amadesi S et al (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578:715–733

    Article  CAS  Google Scholar 

  • Groten CJ, Rebane JT, Blohm G, Magoski NS (2013) Separate Ca2+ sources are buffered by distinct Ca2+ handling systems in aplysia neuroendocrine cells. J Neurosci 33:6476–6491

    Article  CAS  Google Scholar 

  • Güler AD, Lee H, Iida T et al (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    Article  Google Scholar 

  • Han Q, Liu D, Convertino M et al (2018) miRNA-711 binds and activates TRPA1 extracellularly to evoke acute and chronic pruritus. Neuron 99:449–463.e6

    Article  CAS  Google Scholar 

  • Hartmannsgruber V, Heyken WT, Kacik M et al (2007) Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS One 2:e827

    Article  Google Scholar 

  • Hassler SN, Ahmad FB, Burgos-Vega CC (2019) Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia 39:111–122

    Article  Google Scholar 

  • He D, Pan Q, Chen Z et al (2017) Treatment of hypertension by increasing impaired endothelial TRPV4-KCa2.3 interaction. EMBO Mol Med 9:1491–1503

    Article  CAS  Google Scholar 

  • Hinata M, Imai S, Sanaki T et al (2018) Sensitization of transient receptor potential vanilloid 4 and increasing its endogenous ligand 5,6-epoxyeicosatrienoic acid in rats with monoiodoacetate-induced osteoarthritis. Pain 159:939–947

    Article  CAS  Google Scholar 

  • Hu F, Hui Z, Wei W et al (2017) Hypotonic stress promotes ATP release, reactive oxygen species production and cell proliferation via TRPV4 activation in rheumatoid arthritis rat synovial fibroblasts. Biochem Biophys Res Commun 486:108–115

    Article  CAS  Google Scholar 

  • Hu W, Ding Y, Li Q et al (2020) Transient receptor potential vanilloid 4 channels as therapeutic targets in diabetes and diabetes-related complications. J Diabetes Investig. https://doi.org/10.1111/jdi.13244

  • Hyun JJ, Lee HS (2014) Experimental models of pancreatitis. Clin Endosc 47:212–216

    Article  Google Scholar 

  • Inoue K, Tsuda M, Koizumi S (2005) ATP receptors in pain sensation: involvement of spinal microglia and P2X(4) receptors. Purinergic Signal 1:95–100

    Article  CAS  Google Scholar 

  • Ishibashi T, Takumida M, Akagi N et al (2008) Expression of transient receptor potential vanilloid (TRPV) 1, 2, 3, and 4 in mouse inner ear. Acta Otolaryngol 128:1288–1293

    Article  Google Scholar 

  • Ito M, Ono K, Hitomi S et al (2017) Prostanoid-dependent spontaneous pain and PAR2-dependent mechanical allodynia following oral mucosal trauma: involvement of TRPV1, TRPA1 and TRPV4. Mol Pain 13:1744806917704138

    Article  CAS  Google Scholar 

  • Jensen TS, Finnerup NB (2014) Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 13:924–935

    Article  Google Scholar 

  • Jolivalt CG, Frizzi KE, Guernsey L (2016) Peripheral neuropathy in mouse models of diabetes. Curr Protoc Mouse Biol 6:223–255

    Article  Google Scholar 

  • Kanju P, Chen Y, Lee W (2016) Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain. Sci Rep 6:26894

    Article  CAS  Google Scholar 

  • Kawasaki S, Soga M, Sakurai Y (2021) Selective blockade of transient receptor potential vanilloid 4 reduces cyclophosphamide-induced bladder pain in mice. Eur J Pharmacol 899:174040

    Article  CAS  Google Scholar 

  • Kobayashi K, Ashina K, Derouiche S et al (2021) 5,6-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid accelerates the healing of colitis by inhibiting transient receptor potential vanilloid 4-mediated signaling. FASEB J 35:e21238

    Article  CAS  Google Scholar 

  • Koeppen BM, Stanton BA (2013) Renal physiology, 5th edn. Elsevier

    Google Scholar 

  • Köttgen M, Buchholz B, Garcia-Gonzalez MA et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447

    Article  Google Scholar 

  • Lan Z, Chen L, Feng J et al (2021) Mechanosensitive TRPV4 is required for crystal-induced inflammation. Ann Rheum Dis 80:1604–1614

    Article  CAS  Google Scholar 

  • Lapajne L, Lakk M, Yarishkin (2020) Polymodal sensory transduction in mouse corneal epithelial cells. Invest Ophthalmol Vis Sci 61:2

    Article  CAS  Google Scholar 

  • Lechner SG, Markworth S, Poole K et al (2011) The molecular and cellular identity of peripheral osmoreceptors. Neuron 69:332–344

    Article  CAS  Google Scholar 

  • Lei L, Cao X, Yang F et al (2013) A TRPV4 channel C-terminal folding recognition domain critical for trafficking and function. J Biol Chem 288:10427–10439

    Article  CAS  Google Scholar 

  • Li J, Kanju P, Patterson M et al (2011) TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environ Health Perspect 119:784–793

    Article  CAS  Google Scholar 

  • Liedtke W, Choe Y, Martí-Renom MA et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  CAS  Google Scholar 

  • Liu X, Bandyopadhyay BC, Nakamoto T et al (2006) A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281:15485–15495

    Article  CAS  Google Scholar 

  • Ma X, Cao J, Luo J et al (2010) Depletion of intracellular Ca2+ stores stimulates the translocation of vanilloid transient receptor potential 4-c1 heteromeric channels to the plasma membrane. Arterioscler Thromb Vasc Biol 30:2249–2255

    Article  CAS  Google Scholar 

  • Maqboul A, Elsadek B (2018) Expression profiles of TRPV1, TRPV4, TLR4 and ERK1/2 in the dorsal root ganglionic neurons of a cancer-induced neuropathy rat model. Peer J 6:e4622

    Article  Google Scholar 

  • Materazzi S, Fusi C, Benemei S et al (2012) TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch 463:561–569

    Article  CAS  Google Scholar 

  • Matsumoto K, Yamaba R, Inoue K et al (2018) Transient receptor potential vanilloid 4 channel regulates vascular endothelial permeability during colonic inflammation in dextran sulphate sodium-induced murine colitis. Br J Pharmacol 175:84–99

    Article  CAS  Google Scholar 

  • Matsumura Y, Yokoyama Y, Hirakawa H et al (2014) The prophylactic effects of a traditional Japanese medicine, goshajinkigan, on paclitaxel-induced peripheral neuropathy and its mechanism of action. Mol Pain 10:61

    Article  Google Scholar 

  • Matthews BD, Thodeti CK, Tytell JD et al (2010) Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol (Camb) 2:435–442

    Article  CAS  Google Scholar 

  • McGeown JG (2010) Seeing is believing! Imaging Ca2+−signalling events in living cells. Exp Physiol 95:1049–1060

    Article  CAS  Google Scholar 

  • Mihara H, Boudaka A, Sugiyama T, Moriyama Y, Tominaga M (2011) Transient receptor potential vanilloid 4 (TRPV4)-dependent calcium influx and ATP release in mouse oesophageal keratinocytes. J Physiol 589:3471–3482

    Article  CAS  Google Scholar 

  • Mihara H, Suzuki N, Boudaka AA, Muhammad JS, Tominaga M, Tabuchi Y, Sugiyama T (2016) Transient receptor potential vanilloid 4-dependent calcium influx and ATP release in mouse and rat gastric epithelia. World J Gastroenterol 22:5512–5519

    Article  CAS  Google Scholar 

  • Mihara H, Uchida K, Koizumi S, Moriyama Y (2018) Involvement of VNUT-exocytosis in transient receptor potential vanilloid 4-dependent ATP release from gastrointestinal epithelium. PLoS One 13:e0206276

    Article  Google Scholar 

  • Moore C, Cevikbas F, Pasolli HA, Chen Y, Kong W, Kempkes C, Parekh P, Lee SH, Kontchou NA, Yeh I, Jokerst NM, Fuchs E, Steinhoff M, Liedtke WB (2013) UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci U S A 110:E3225–E3234

    Article  CAS  Google Scholar 

  • Mueller-Tribbensee SM, Karna M, Khalil M (2015) Differential contribution of TRPA1, TRPV4 and TRPM8 to colonic nociception in mice. PLoS One 10:e0128242

    Article  Google Scholar 

  • Nikolaev YA, Cox CD, Ridone P et al (2019) Mammalian TRP ion channels are insensitive to membrane stretch. J Cell Sci 132:jcs238360

    Article  CAS  Google Scholar 

  • Nilius B, Vriens J, Prenen J et al (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286:C195–C205

    Article  CAS  Google Scholar 

  • Ning L, Wang C, Ding X et al (2012) Functional interaction of TRPV4 channel protein with annexin A2 in DRG. Neurol Res 34:685–693

    Article  CAS  Google Scholar 

  • Ning L, Wang C, Fan X et al (2014) Role of colchicine-induced microtubule depolymerisation in hyperalgesia via TRPV4 in rats with chronic compression of the dorsal root ganglion. Neurol Res 36:70–78

    Article  CAS  Google Scholar 

  • O'Conor CJ, Ramalingam S, Zelenski NA et al (2016) Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci Rep 6:29053

    Article  CAS  Google Scholar 

  • Park CK, Xu ZZ, Berta T et al (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82:47–54

    Article  CAS  Google Scholar 

  • Plant TD, Strotmann R (2007) TRPV4. Handb Exp Pharmacol 179:189–205

    Article  CAS  Google Scholar 

  • Poole DP, Amadesi S, Veldhuis NA et al (2013) Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 288:5790–5802

    Article  CAS  Google Scholar 

  • Potla R, Hirano-Kobayashi M, Wu H (2020) Molecular mapping of transmembrane mechanotransduction through the β1 integrin-CD98hc-TRPV4 axis. J Cell Sci 133:jcs248823

    Article  CAS  Google Scholar 

  • Qu YJ, Zhang X, Fan ZZ et al (2016) Effect of TRPV4-p38 MAPK pathway on neuropathic pain in rats with chronic compression of the dorsal root ganglion. Biomed Res Int 2016:6978923

    Article  Google Scholar 

  • Rajasekhar P, Poole DP, Liedtke W et al (2015) P2Y1 receptor activation of the TRPV4 ion channel enhances purinergic signaling in satellite glial cells. J Biol Chem 290:29051–29062

    Article  CAS  Google Scholar 

  • Richter F, Segond von Banchet G, Schaible HG (2019) Transient receptor potential vanilloid 4 ion channel in C-fibres is involved in mechanonociception of the normal and inflamed joint. Sci Rep 9:10928

    Article  Google Scholar 

  • Saigusa T, Yue Q, Bunni MA et al (2019) Loss of primary cilia increases polycystin-2 and TRPV4 and the appearance of a nonselective cation channel in the mouse cortical collecting duct. Am J Physiol Renal Physiol 317:F632–F637

    Article  CAS  Google Scholar 

  • Saliez J, Bouzin C, Rath G (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117:1065–1074

    Article  CAS  Google Scholar 

  • Sánchez JC, Ehrlich BE (2021) Functional interaction between transient receptor potential v4 channel and neuronal calcium sensor 1 and the effects of paclitaxel. Mol Pharmacol 100:258–270

    Article  Google Scholar 

  • Sato M, Sobhan U, Tsumura M et al (2013) Hypotonic-induced stretching of plasma membrane activates transient receptor potential vanilloid channels and sodium-calcium exchangers in mouse odontoblasts. J Endod 39:779–787

    Article  Google Scholar 

  • Savio LEB, de Andrade MP, da Silva CG, Coutinho-Silva R (2018) The P2X7 receptor in inflammatory diseases: angel or demon? Front Pharmacol 9:52

    Article  Google Scholar 

  • Schwaller B (2012) The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells. Biochim Biophys Acta 1820:1294–1303

    Article  CAS  Google Scholar 

  • Segond von Banchet G, Boettger MK et al (2013) Neuronal IL-17 receptor upregulates TRPV4 but not TRPV1 receptors in DRG neurons and mediates mechanical but not thermal hyperalgesia. Mol Cell Neurosci 52:152–160

    Article  CAS  Google Scholar 

  • Servin-Vences MR, Moroni M, Lewin GR, Poole K (2017) Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. Elife 6:e21074

    Article  Google Scholar 

  • Shukla AK, Kim J, Ahn S et al (2010) Arresting a transient receptor potential (TRP) channel: beta-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. J Biol Chem 285:30115–30125

    Article  Google Scholar 

  • Sianati S, Schroeter L, Richardson J et al (2021) Modulating the mechanical activation of TRPV4 at the cell-substrate interface. Front Bioeng Biotechnol 8:608951

    Article  Google Scholar 

  • Sikandar S, Dickenson AH (2012) Visceral pain: the ins and outs, the ups and downs. Curr Opin Support Palliat Care 6:17–26

    Article  Google Scholar 

  • Simpson S, Preston D, Schwerk C et al (2019) Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells. Am J Physiol Cell Physiol 317:C881–C893

    Article  CAS  Google Scholar 

  • Sipe WE, Brierley SM, Martin CM et al (2008) Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 294:G1288–G1298

    Article  CAS  Google Scholar 

  • Sluyter R (2017) The P2X7 receptor. Adv Exp Med Biol 51:17–53

    Article  Google Scholar 

  • Soga M, Izumi T, Nanchi I (2021) Suppression of joint pain in transient receptor potential vanilloid 4 knockout rats with monoiodoacetate-induced osteoarthritis. Pain Rep 6:e951

    Article  Google Scholar 

  • Soya M, Sato M, Sobhan U et al (2014) Plasma membrane stretch activates transient receptor potential vanilloid and ankyrin channels in Merkel cells from hamster buccal mucosa. Cell Calcium:208–218

    Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K et al (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 210:695–702

    Article  Google Scholar 

  • Strotmann R, Schultz G, Plant TD (2003) Ca2+−dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 278:26541–26549

    Article  CAS  Google Scholar 

  • Strotmann R, Semtner M, Kepura F et al (2010) Interdomain interactions control Ca2+−dependent potentiation in the cation channel TRPV4. PLoS One 5:e10580

    Article  Google Scholar 

  • Sullivan MN, Francis M, Pitts NL et al (2012) Optical recording reveals novel properties of GSK1016790A-induced vanilloid transient receptor potential channel TRPV4 activity in primary human endothelial cells. Mol Pharmacol 82:464–472

    Article  CAS  Google Scholar 

  • Suzuki M, Mizuno A, Kodaira K, Imai M (2003a) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278:22664–22668

    Article  CAS  Google Scholar 

  • Suzuki M, Watanabe Y, Oyama Y et al (2003b) Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci Lett 353:189–192

    Article  CAS  Google Scholar 

  • Swain SM, Liddle RA (2020) Piezo1 acts upstream of TRPV4 to induce pathological changes in endothelial cells due to shear stress. J Biol Chem 296:100171

    Article  Google Scholar 

  • Swain SM, Romac JM, Shahid RA et al (2020) TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J Clin Invest 130:2527–2541

    Article  CAS  Google Scholar 

  • Syeda R, Florendo MN, Cox CD et al (2016) Kefauver JM, Santos JS, Martinac B, Patapoutian A. Piezo1 channels are inherently mechanosensitive. Cell Rep 17:1739–1746

    Article  CAS  Google Scholar 

  • Takumida M, Kubo N, Ohtani M et al (2005) Transient receptor potential channels in the inner ear: presence of transient receptor potential channel subfamily 1 and 4 in the Guinea pig inner ear. Acta Otolaryngol 125:929–934

    Article  Google Scholar 

  • D’hoedt D, Owsianik G, Prenen J et al (2008) Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J Biol Chem 283:6272–6280

    Article  Google Scholar 

  • Talavera K, Startek JB, Alvarez-Collazo J (2020) Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol Rev 100:725–803

    Article  CAS  Google Scholar 

  • Tjølsen A, Berge OG, Hunskaar S (1992) The formalin test: an evaluation of the method. Pain 51:5–17

    Article  Google Scholar 

  • Toft-Bertelsen TL, Križaj D, MacAulay N (2017) When size matters: transient receptor potential vanilloid 4 channel as a volume-sensor rather than an osmo-sensor. J Physiol 595:3287–3302

    Article  CAS  Google Scholar 

  • Toft-Bertelsen TL, Yarishkin O, Redmon S (2019) Volume sensing in the transient receptor potential vanilloid 4 ion channel is cell type-specific and mediated by an N-terminus volume-sensing domain. J Biol Chem pii: jbc.RA119.011187

    Google Scholar 

  • Vellani V, Kinsey AM, Prandini M et al (2010) Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones. Mol Pain 6:61

    Article  Google Scholar 

  • Vergnolle N, Cenac N, Altier C (2010) A role for transient receptor potential vanilloid 4 in tonicity-induced neurogenic inflammation. Br J Pharmacol 159:1161–1173

    Article  CAS  Google Scholar 

  • Vriens J, Owsianik G, Janssens A et al (2007) Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem 282:12796–12803

    Article  CAS  Google Scholar 

  • Vriens J, Watanabe H, Janssens A et al (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396–401

    Article  CAS  Google Scholar 

  • Wang C, Ning LP, Wang YH et al (2011) Nuclear factor-kappa B mediates TRPV4-NO pathway involved in thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 221:19–24

    Article  CAS  Google Scholar 

  • Watanabe H, Davis JB, Smart D et al (2002) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277:13569–13577

    Article  CAS  Google Scholar 

  • Watanabe H, Vriens J, Janssens A et al (2003a) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium 33:489–495

    Article  CAS  Google Scholar 

  • Watanabe H, Vriens J, Prenen J et al (2003b) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    Article  CAS  Google Scholar 

  • Wegierski T, Hill K, Schaefer M, Walz G (2006) The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J 25:5659–5669

    Article  CAS  Google Scholar 

  • Wegierski T, Lewandrowski U, Müller B et al (2009) Tyrosine phosphorylation modulates the activity of TRPV4 in response to defined stimuli. J Biol Chem 284:2923–2933

    Article  CAS  Google Scholar 

  • Wei X, Edelmayer RM, Yan J, Dussor G (2011) Activation of TRPV4 on dural afferents produces headache-related behavior in a preclinical rat model. Cephalalgia 31:1595–1600

    Article  Google Scholar 

  • Wei H, Zhang Y, Fan ZZ et al (2013) Effects of colchicine-induced microtubule depolymerization on TRPV4 in rats with chronic compression of the dorsal root ganglion. Neurosci Lett 534:344–350

    Article  CAS  Google Scholar 

  • White JP, Cibelli M, Rei Fidalgo A et al (2010) Role of transient receptor potential and acid-sensing ion channels in peripheral inflammatory pain. Anesthesiology 112:729–741

    Article  CAS  Google Scholar 

  • White JP, Cibelli M, Urban L et al (2016) TRPV4: molecular conductor of a diverse orchestra. Physiol Rev 96:911–973

    Article  CAS  Google Scholar 

  • White JP, Urban L, Nagy I (2011) TRPV1 function in health and disease. Curr Pharm Biotechnol 12:130–144

    Article  CAS  Google Scholar 

  • Xing R, Wang P, Zhao L (2017) Mechanism of TRPA1 and TRPV4 participating in mechanical hyperalgesia of rat experimental knee osteoarthritis. Arch Rheumatol 32:96–104

    Article  Google Scholar 

  • Xu H, Zhao H, Tian W et al (2003) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stress. J Biol Chem 278:11520–11527

    Article  CAS  Google Scholar 

  • Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45:27–37

    Article  CAS  Google Scholar 

  • Zhang Y, Wang YH, Ge HY (2008) A transient receptor potential vanilloid 4 contributes to mechanical allodynia following chronic compression of dorsal root ganglion in rats. Neurosci Lett 432:222–227

    Article  CAS  Google Scholar 

  • Zhang ZR, Chu WF, Song B (2013) TRPP2 and TRPV4 form an EGF-activated calcium permeable channel at the apical membrane of renal collecting duct cells. PLoS One 8:e73424

    Article  CAS  Google Scholar 

  • Zhao P, Lieu T, Barlow N et al (2014) Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem 289:27215–27234

    Article  CAS  Google Scholar 

  • Zhao P, Lieu T, Barlow N et al (2015) Neutrophil elastase activates protease-activated receptor-2 (PAR2) and transient receptor potential vanilloid 4 (TRPV4) to cause inflammation and pain. J Biol Chem 290:13875–13887

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This study is not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Graham McGeown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

White, J.P.M., Cibelli, M., Nagy, I., Nilius, B., McGeown, J.G. (2022). The Emerging Pro-Algesic Profile of Transient Receptor Potential Vanilloid Type 4. In: Pedersen, S.H.F. (eds) Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 186. Springer, Cham. https://doi.org/10.1007/112_2022_75

Download citation

Publish with us

Policies and ethics