Skip to main content

Advertisement

Log in

Kinin Receptors Sensitize TRPV4 Channel and Induce Mechanical Hyperalgesia: Relevance to Paclitaxel-Induced Peripheral Neuropathy in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Kinin B1 (B1R) and B2 receptors (B2R) and the transient receptor potential vanilloid 4 (TRPV4) channel are known to play a critical role in the peripheral neuropathy induced by paclitaxel (PTX) in rodents. However, the downstream pathways activated by kinin receptors as well as the sensitizers of the TRPV4 channel involved in this process remain unknown. Herein, we investigated whether kinins sensitize TRPV4 channels in order to maintain PTX-induced peripheral neuropathy in mice. The mechanical hyperalgesia induced by bradykinin (BK, a B2R agonist) or des-Arg9-BK (DABK, a B1R agonist) was inhibited by the selective TRPV4 antagonist HC-067047. Additionally, BK was able to sensitize TRPV4, thus contributing to mechanical hyperalgesia. This response was dependent on phospholipase C/protein kinase C (PKC) activation. The selective kinin B1R (des-Arg9-[Leu8]-bradykinin) and B2R (HOE 140) antagonists reduced the mechanical hyperalgesia induced by PTX, with efficacies and time response profiles similar to those observed for the TRPV4 antagonist (HC-067047). Additionally, both kinin receptor antagonists inhibited the overt nociception induced by hypotonic solution in PTX-injected animals. The same animals presented lower PKCε levels in skin and dorsal root ganglion samples. The selective PKCε inhibitor (εV1–2) reduced the hypotonicity-induced overt nociception in PTX-treated mice with the same magnitude observed for the kinin receptor antagonists. These findings suggest that B1R or B2R agonists sensitize TRPV4 channels to induce mechanical hyperalgesia in mice. This mechanism of interaction may contribute to PTX-induced peripheral neuropathy through the activation of PKCε. We suggest these targets represent new opportunities for the development of effective analgesics to treat chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Polomano RC, Bennett GJ (2001) Chemotherapy-evoked painful peripheral neuropathy. Pain Med 2(1):8–14. doi:10.1046/j.1526-4637.2001.002001008.x

    Article  CAS  PubMed  Google Scholar 

  2. Dougherty PM, Cata JP, Cordella JV, Burton A, Weng HR (2004) Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain 109(1–2):132–142. doi:10.1016/j.pain.2004.01.021

    Article  CAS  PubMed  Google Scholar 

  3. Costa R, Motta EM, Dutra RC, Manjavachi MN, Bento AF, Malinsky FR, Pesquero JB, Calixto JB (2011) Anti-nociceptive effect of kinin B(1) and B(2) receptor antagonists on peripheral neuropathy induced by paclitaxel in mice. Br J Pharmacol 164(2b):681–693. doi:10.1111/j.1476-5381.2011.01408.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Calixto JB, Medeiros R, Fernandes ES, Ferreira J, Cabrini DA, Campos MM (2004) Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 143(7):803–818. doi:10.1038/sj.bjp.0706012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marceau F, Regoli D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3(10):845–852. doi:10.1038/nrd1522

    Article  CAS  PubMed  Google Scholar 

  6. Ma QP, Heavens R (2001) Basal expression of bradykinin B(1) receptor in the spinal cord in humans and rats. Neuroreport 12(11):2311–2314

    Article  CAS  PubMed  Google Scholar 

  7. Ma QP (2001) The expression of bradykinin B(1) receptors on primary sensory neurones that give rise to small caliber sciatic nerve fibres in rats. Neuroscience 107(4):665–673

    Article  CAS  PubMed  Google Scholar 

  8. Cesare P, McNaughton P (1996) A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci U S A 93(26):15435–15439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cesare P, Dekker LV, Sardini A, Parker PJ, McNaughton PA (1999) Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron 23(3):617–624

    Article  CAS  PubMed  Google Scholar 

  10. Chuang HH, Prescott ED, Kong H, Shields S, Jordt SE, Basbaum AI, Chao MV, Julius D (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411(6840):957–962. doi:10.1038/35082088

    Article  CAS  PubMed  Google Scholar 

  11. Ferreira J, da Silva GL, Calixto JB (2004) Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br J Pharmacol 141(5):787–794. doi:10.1038/sj.bjp.0705546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41(6):849–857

    Article  CAS  PubMed  Google Scholar 

  13. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124(6):1269–1282. doi:10.1016/j.cell.2006.02.023

    Article  CAS  PubMed  Google Scholar 

  14. Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Cui X, Tominaga M et al (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131(Pt 5):1241–1251. doi:10.1093/brain/awn060

    Article  PubMed  Google Scholar 

  15. Fan HC, Zhang X, McNaughton PA (2009) Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284(41):27884–27891. doi:10.1074/jbc.M109.028803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liedtke W, Tobin DM, Bargmann CI, Friedman JM (2003) Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci U S A 100(Suppl 2):14531–14536. doi:10.1073/pnas.2235619100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39(3):497–511

    Article  CAS  PubMed  Google Scholar 

  18. Alessandri-Haber N, Dina OA, Joseph EK, Reichling D, Levine JD (2006) A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. The Journal of Neuroscience 26(14):3864–3874. doi:10.1523/JNEUROSCI.5385-05.2006

    Article  CAS  PubMed  Google Scholar 

  19. Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N et al (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578(Pt 3):715–733. doi:10.1113/jphysiol.2006.121111

    Article  CAS  PubMed  Google Scholar 

  20. Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. The Journal of Neuroscience 24(18):4444–4452. doi:10.1523/JNEUROSCI.0242-04.2004

    Article  CAS  PubMed  Google Scholar 

  21. Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. The Journal of Neuroscience 28(5):1046–1057. doi:10.1523/JNEUROSCI.4497-07.2008

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–451. doi:10.1016/j.neuroscience.2011.06.085

    Article  CAS  PubMed  Google Scholar 

  23. Materazzi S, Fusi C, Benemei S, Pedretti P, Patacchini R, Nilius B, Prenen J, Creminon C et al (2012) TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Archiv 463(4):561–569. doi:10.1007/s00424-011-1071-x

    Article  CAS  PubMed  Google Scholar 

  24. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW (2010) Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160(7):1577–1579. doi:10.1111/j.1476-5381.2010.00872.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hylden JL, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67(2–3):313–316

    Article  CAS  PubMed  Google Scholar 

  26. Costa R, Manjavachi MN, Motta EM, Marotta DM, Juliano L, Torres HA, Pesquero JB, Calixto JB (2010) The role of kinin B1 and B2 receptors in the scratching behaviour induced by proteinase-activated receptor-2 agonists in mice. Br J Pharmacol 159(4):888–897. doi:10.1111/j.1476-5381.2009.00571.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Costa R, Motta EM, Manjavachi MN, Cola M, Calixto JB (2012) Activation of the alpha-7 nicotinic acetylcholine receptor (alpha7 nAchR) reverses referred mechanical hyperalgesia induced by colonic inflammation in mice. Neuropharmacology 63(5):798–805. doi:10.1016/j.neuropharm.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  28. Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462. doi:10.1146/annurev.pa.20.040180.002301

    Article  CAS  PubMed  Google Scholar 

  29. Dutra RC, Bicca MA, Segat GC, Silva KA, Motta EM, Pianowski LF, Costa R, Calixto JB (2015) The antinociceptive effects of the tetracyclic triterpene euphol in inflammatory and neuropathic pain models: the potential role of PKCepsilon. Neuroscience 303:126–137. doi:10.1016/j.neuroscience.2015.06.051

    Article  CAS  PubMed  Google Scholar 

  30. Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP, Hayward NJ, McNamara CR et al (2010) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci U S A 107(44):19084–19089. doi:10.1073/pnas.1005333107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rivera E, Cianfrocca M (2015) Overview of neuropathy associated with taxanes for the treatment of metastatic breast cancer. Cancer Chemother Pharmacol 75(4):659–670. doi:10.1007/s00280-014-2607-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mizumura K, Sugiura T, Katanosaka K, Banik RK, Kozaki Y (2009) Excitation and sensitization of nociceptors by bradykinin: what do we know? Exp Brain Res 196(1):53–65. doi:10.1007/s00221-009-1814-5

    Article  CAS  PubMed  Google Scholar 

  33. Ferreira J, Campos MM, Araujo R, Bader M, Pesquero JB, Calixto JB (2002) The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level. Neuropharmacology 43(7):1188–1197

    Article  CAS  PubMed  Google Scholar 

  34. Fox A, Wotherspoon G, McNair K, Hudson L, Patel S, Gentry C, Winter J (2003) Regulation and function of spinal and peripheral neuronal B1 bradykinin receptors in inflammatory mechanical hyperalgesia. Pain 104(3):683–691

    Article  CAS  PubMed  Google Scholar 

  35. Ma QP, Hill R, Sirinathsinghji D (2000) Basal expression of bradykinin B1 receptor in peripheral sensory ganglia in the rat. Neuroreport 11(18):4003–4005

    Article  CAS  PubMed  Google Scholar 

  36. Ferreira J, Triches KM, Medeiros R, Cabrini DA, Mori MA, Pesquero JB, Bader M, Calixto JB (2008) The role of kinin B1 receptors in the nociception produced by peripheral protein kinase C activation in mice. Neuropharmacology 54(3):597–604. doi:10.1016/j.neuropharm.2007.11.008

    Article  CAS  PubMed  Google Scholar 

  37. Cunha TM, Verri WA Jr, Fukada SY, Guerrero AT, Santodomingo-Garzon T, Poole S, Parada CA, Ferreira SH et al (2007) TNF-alpha and IL-1beta mediate inflammatory hypernociception in mice triggered by B1 but not B2 kinin receptor. Eur J Pharmacol 573(1–3):221–229. doi:10.1016/j.ejphar.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  38. Yanaga F, Hirata M, Koga T (1991) Evidence for coupling of bradykinin receptors to a guanine-nucleotide binding protein to stimulate arachidonate liberation in the osteoblast-like cell line, MC3T3-E1. Biochim Biophys Acta 1094(2):139–146

    Article  CAS  PubMed  Google Scholar 

  39. Dina OA, Chen X, Reichling D, Levine JD (2001) Role of protein kinase Cepsilon and protein kinase A in a model of paclitaxel-induced painful peripheral neuropathy in the rat. Neuroscience 108(3):507–515

    Article  CAS  PubMed  Google Scholar 

  40. Aley KO, Messing RO, Mochly-Rosen D, Levine JD (2000) Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isozyme of protein kinase C. The Journal of Neuroscience 20(12):4680–4685

    CAS  PubMed  Google Scholar 

  41. Zhang H, Cang CL, Kawasaki Y, Liang LL, Zhang YQ, Ji RR, Zhao ZQ (2007) Neurokinin-1 receptor enhances TRPV1 activity in primary sensory neurons via PKCepsilon: a novel pathway for heat hyperalgesia. The Journal of Neuroscience 27(44):12067–12077. doi:10.1523/JNEUROSCI.0496-07.2007

    Article  CAS  PubMed  Google Scholar 

  42. Sachs D, Villarreal C, Cunha F, Parada C, Ferreira S (2009) The role of PKA and PKCepsilon pathways in prostaglandin E2-mediated hypernociception. Br J Pharmacol 156(5):826–834. doi:10.1111/j.1476-5381.2008.00093.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meotti FC, Campos R, da Silva K, Paszcuk AF, Costa R, Calixto JB (2012) Inflammatory muscle pain is dependent on the activation of kinin B(1) and B(2) receptors and intracellular kinase pathways. Br J Pharmacol 166(3):1127–1139. doi:10.1111/j.1476-5381.2012.01830.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) e Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA). M.A.B and M.N.M. are PhD students funded by the CNPq. G.C.S. and F.C.D are master’s students funded by the CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João B. Calixto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, R., Bicca, M.A., Manjavachi, M.N. et al. Kinin Receptors Sensitize TRPV4 Channel and Induce Mechanical Hyperalgesia: Relevance to Paclitaxel-Induced Peripheral Neuropathy in Mice. Mol Neurobiol 55, 2150–2161 (2018). https://doi.org/10.1007/s12035-017-0475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0475-9

Keywords

Navigation