Skip to main content
Log in

Intravascular contrast agents in diagnostic applications: Use of red blood cells to improve the lifespan and efficacy of blood pool contrast agents

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In medicine, discrimination between pathologies and normal areas is of great importance, and in most cases, such discrimination is made possible by novel imaging technologies. Numerous modalities have been developed to visualize tissue vascularization in cardiovascular diseases or during angiogenic and vasculogenic processes. Here, we report the recent advances in vasculature imaging, providing an overview of the current non-invasive approaches in biomedical diagnostics and potential future strategies for prognostic assessment of vessel diseases, such as aneurysms and coronary artery occlusion leading to myocardial infarction. There are several contrast agents (CAs) available to improve the visibility of specific tissues at the early stage of diseases, allowing for rapid treatment. However, CAs are also hampered by numerous limitations, including rapid diffusion from blood vessels into the interstitial space, toxicity, and low sensitivity. Extravasation from blood vessels leads to a rapid loss of the image. If the contrast medium can fully be confined to the vascular space, high-resolution structural and functional vascular imaging could be obtained. Many scientists have contributed new materials and/or new carrier systems. For example, the use of red blood cells (RBCs) as CA-delivery systems appears to provide a scalable alternative to current procedures that allows adequate vascular imaging. Recognition and removal of CAs from the circulation can be prevented and/or delayed by using RBCs as biomimetic CA-carriers, and this technology should be clinically validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunjachan, S.; Ehling, J.; Storm, G.; Kiessling, F.; Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, and prospects. Chem. Rev. 2015, 115, 10907–10937.

    Article  Google Scholar 

  2. Nappi, C.; Acampa, W.; Pellegrino, T.; Petretta, M.; Cuocolo, A. Beyond ultrasound: Advances in multimodality cardiac imaging. Intern. Emerg. Med. 2015, 10, 9–20.

    Article  Google Scholar 

  3. Botnar, R. M.; Makowski, M. R. Cardiovascular magnetic resonance imaging in small animals. Prog. Mol. Biol. Transl. Sci. 2012, 105, 227–261.

    Article  Google Scholar 

  4. Buzug, T. M. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT; Springer-Verlag: Berlin Heidelberg, 2008.

    Google Scholar 

  5. Xia, J.; Yao, J. J.; Wang, L. V. Photoacoustic tomography: Principles and advances. Electromagn. Waves (Camb.) 2014, 147, 1–22.

    Article  Google Scholar 

  6. Chen, X.; Cui, M. C.; Deuther-Conrad, W.; Tu, Y. F.; Ma, T.; Xie, Y.; Jia, B.; Li, Y.; Xie, F.; Wang, X. et al. Synthesis and biological evaluation of a novel 99mTc cyclopentadienyl tricarbonyl complex ([(Cp-R)99mTc(CO)3]) for sigma-2 receptor tumor imaging. Bioorg. Med. Chem. Lett. 2012, 22, 6352–6357.

    Article  Google Scholar 

  7. Wong, R. M.; Gilbert, D. A.; Liu, K.; Louie, A. Y. Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 2012, 6, 3461–3467.

    Article  Google Scholar 

  8. Jensen, J. A. Medical ultrasound imaging. Prog. Biophys. Mol. Biol. 2007, 93, 153–165.

    Article  Google Scholar 

  9. Choe, R.; Corlu, A.; Lee, K.; Durduran, T.; Konecky, S. D.; Grosicka-Koptyra, M.; Arridge, S. R.; Czerniecki, B. J.; Fraker, D. L.; DeMichele, A. et al. Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI. Med. Phys. 2005, 32, 1128–1139.

    Article  Google Scholar 

  10. Gleich, B.; Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005, 435, 1214–1217.

    Article  Google Scholar 

  11. Nottelet, B.; Darcos, V.; Coudane, J. Aliphatic polyesters for medical imaging and theranostic applications. Eur. J. Pharm. Biopharm. 2015, 97, 350–370.

    Article  Google Scholar 

  12. Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 2010, 62, 1052–1063.

    Article  Google Scholar 

  13. Guidance for industry: Developing medical imaging drug and biological products [Online]. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071603.pdf. (accessed Aug 2, 2016).

  14. Gad, S. C. Special-case products: Imaging agents and oncology drugs. In Drug Safety Evaluation; 2nd ed.; Wiley: Hoboken, NJ, 2009; pp 725–736.

    Google Scholar 

  15. Belzunegui, T.; Louis, C. J.; Torrededia, L.; Oteiza, J. Extravasation of radiographic contrast material and compartment syndrome in the hand: A case report. Scand. J. Trauma Resusc. Emerg. Med. 2011, 19, 9.

    Article  Google Scholar 

  16. Bellin, M. F.; Jakobsen, J. A.; Tomassin, I.; Thomsen, H. S.; Morcos, S. K.; Morcos, S. K.; Thomsen, H. S.; Morcos, S. K.; Almén, T.; Aspelin, P. et al. Contrast medium extravasation injury: Guidelines for prevention and management. Eur. Radiol. 2002, 12, 2807–2812.

    Article  Google Scholar 

  17. Couvreur, P. Nanoparticles in drug delivery: Past, present and future. Adv. Drug Deliv. Rev. 2013, 65, 21–23.

    Article  Google Scholar 

  18. Bao, G.; Mitragotri, S.; Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng. 2013, 15, 253–282.

    Article  Google Scholar 

  19. Berry, C. C.; Curtis, A. S. G. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R198–R206.

    Article  Google Scholar 

  20. Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009, 61, 428–437.

    Article  Google Scholar 

  21. Lipka, J.; Semmler-Behnke, M.; Sperling, R. A.; Wenk, A.; Takenaka, S.; Schleh, C.; Kissel, T.; Parak, W. J.; Kreyling, W. G. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials 2010, 31, 6574–6581.

    Article  Google Scholar 

  22. Annapragada, A. Advances in nanoparticle imaging technology for vascular pathologies. Annu. Rev. Med. 2015, 66, 177–193.

    Article  Google Scholar 

  23. Nichols, M.; Townsend, N.; Scarborough, P.; Rayner, M. Cardiovascular disease in Europe 2014: Epidemiological update. Eur. Heart J. 2014, 35, 2950–2959.

    Article  Google Scholar 

  24. Ramaswamy, A. K.; Hamilton, M., II; Joshi, R. V.; Kline, B. P.; Li, R.; Wang, P.; Goergen, C. J. Molecular imaging of experimental abdominal aortic aneurysms. Scientific World J. 2013, 2013, 973150.

    Article  Google Scholar 

  25. Leiner, T.; Goyen, M.; Rohrer, M.; Schönberg, S. Clinical Blood Pool MR Imaging; Springer-Verlag: Berlin Heidelberg, 2008.

    Book  Google Scholar 

  26. Chen, R.; Ling, D. S.; Zhao, L.; Wang, S. F.; Liu, Y.; Bai, R.; Baik, S.; Zhao, Y. L.; Chen, C. Y.; Hyeon, T. Parallel comparative studies on mouse toxicity of oxide nanoparticle- and gadolinium-based T1 MRI contrast agents. ACS Nano 2015, 9, 12425–12435.

    Article  Google Scholar 

  27. Zeinali Sehrig, F.; Majidi, S.; Asvadi, S.; Hsanzadeh, A.; Rasta, S. H.; Emamverdy, M.; Akbarzadeh, J.; Jahangiri, S.; Farahkhiz, S.; Akbarzadeh, A. An update on clinical applications of magnetic nanoparticles for increasing the resolution of magnetic resonance imaging. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1583–1588.

    Article  Google Scholar 

  28. Rose, T. A., Jr; Choi, J. W. Intravenous imaging contrast media complications: The basics that every clinician needs to know. Am. J. Med. 2015, 128, 943–949.

    Article  Google Scholar 

  29. Geraldes, C. F. G. C.; Laurent, S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging 2009, 4, 1–23.

    Article  Google Scholar 

  30. Merbach, A. S.; Helm, L.; Tóth, É. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; 2nd ed; Wiley: Chichester, 2013.

    Book  Google Scholar 

  31. Cheng, W. R.; Ping, Y.; Zhang, Y.; Chuang, K. H.; Liu, Y. Magnetic resonance imaging (MRI) contrast agents for tumor diagnosis. J. Healthc. Eng. 2013, 4, 23–45.

    Article  Google Scholar 

  32. Hingorani, D. V.; Bernstein, A. S.; Pagel, M. D. A review of responsive MRI contrast agents: 2005–2014. Contrast Media Mol. Imaging 2015, 10, 245–265.

    Article  Google Scholar 

  33. Macintosh, B. J.; Graham, S. J. Magnetic resonance imaging to visualize stroke and characterize stroke recovery: A review. Front. Neurol. 2013, 4, 60.

    Article  Google Scholar 

  34. Jaspers, K.; Versluis, B.; Leiner, T.; Dijkstra, P.; Oostendorp, M.; van Golde, J. M.; Post, M. J.; Backes, W. H. MR angiography of collateral arteries in a hind limb ischemia model: Comparison between blood pool agent Gadomer and small contrast agent Gd-DTPA. PLoS One 2011, 6, e16159.

    Article  Google Scholar 

  35. Prince, M. R.; Narasimham, D. L.; Stanley, J. C.; Wakefield, T. W.; Messina, L. M.; Zelenock, G. B.; Jacoby, W. T.; Marx, M. V.; Williams, D. M.; Cho, K. J. Gadolinium-enhanced magnetic resonance angiography of abdominal aortic aneurysms. J. Vasc. Surg. 1995, 21, 656–669.

    Article  Google Scholar 

  36. Bluemke, D. A.; Achenbach, S.; Budoff, M.; Gerber, T. C.; Gersh, B.; Hillis, L. D.; Hundley, W. G.; Manning, W. J.; Feller Printz, B.; Stuber, M. et al. AHA scientific statement: Noninvasive coronary artery imaging: Magnetic resonance angiography and multidetector computed tomography angiography: A scientific statement from the American heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 2008, 118, 586–606.

    Article  Google Scholar 

  37. Knopp, M. V.; Giesel, F. L.; von Tengg-Kobligk, H.; Radeleff, J.; Requardt, M.; Kirchin, M. A.; Hentrich, H. R. Contrast-enhanced MR angiography of the run-off vasculature: Intraindividual comparison of gadobenate dimeglumine with gadopentetate dimeglumine. J. Magn. Reson. Imaging 2003, 17, 694–702.

    Article  Google Scholar 

  38. Anzalone, N.; Scotti, R.; Iadanza, A. MR angiography of the carotid arteries and intracranial circulation: Advantage of a high relaxivity contrast agent. Neuroradiology 2006, 48, 9–17.

    Article  Google Scholar 

  39. Pesaresi, I.; Cosottini, M. MR angiography contrast agents. In MR Angiography of the Body: Technique and Clinical Applications. Neri, E.; Cosottini, M.; Caramella, D., Eds.; Springer-Verlag: Berlin Heidelberg, 2010; pp 8–16.

    Chapter  Google Scholar 

  40. Pan, D.; Schmieder, A. H.; Wickline, S. A.; Lanza, G. M. Manganese-based MRI contrast agents: Past, present and future. Tetrahedron 2011, 67, 8431–8444.

    Article  Google Scholar 

  41. Pan, D. Introduction. In Nanomedicine: A Soft Matter Perspective. Pan, D., Eds.; CRC Press: Boca Raton, 2014; pp 1–30.

    Google Scholar 

  42. Mangrum, W.; Christianson, K.; Duncan, S. M.; Hoang, P.; Song, A. W.; Merkle, E. Duke Review of MRI Principles; Elsevier Health Sciences: Philadelphia, 2012.

    Google Scholar 

  43. Rohrer, M.; Bauer, H.; Mintorovitch, J.; Requardt, M.; Weinmann, H. J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005, 40, 715–724.

    Article  Google Scholar 

  44. Saeed, M.; Wendland, M. F.; Higgins, C. B. Blood pool MR contrast agents for cardiovascular imaging. J. Magn. Reson. Imaging 2000, 12, 890–898.

    Article  Google Scholar 

  45. Buck, J. R.; Hight, M. R.; Tang, D.; Manning, H. C. Contrast agents for T1-weighted MRI. In Quantitative MRI in Cancer. Yankeelov, T. E.; Pickens, D. R.; Price, R. R., Eds.; CRC Press: Boca Raton, 2011; pp 125–134.

    Google Scholar 

  46. Zhang, H. L.; Maki, J. H.; Prince, M. R. 3D contrast-enhanced MR angiography. J. Magn. Reson. Imaging 2007, 25, 13–25.

    Article  Google Scholar 

  47. Oudkerk M.; Sijens P. E.; Van Beek E. J.; Kuijpers T. J. Safety and efficacy of Dotarem (Gd-DOTA) versus Magnevist (Gd-DTPA) in magnetic resonance imaging of the central nervous system. Invest Radiol. 1995, 30, 75–78.

    Article  Google Scholar 

  48. Aime, S.; Caravan, P. Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. J. Magn. Reson. Imaging 2009, 30, 1259–1267.

    Article  Google Scholar 

  49. Magnevist® injection and pharmacy bulk package [Online]. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/DrugSafetyandRiskM anagementAdvisoryCommittee/UCM192006.pdf. (accessed Aug 2, 2016).

  50. Aime, S.; Cabella, C.; Colombatto, S.; Geninatti Crich, S.; Gianolio, E.; Maggioni, F. Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J. Magn. Reson. Imaging 2002, 16, 394–406.

    Article  Google Scholar 

  51. Caravan, P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem. Soc. Rev. 2006, 35, 512–523.

    Article  Google Scholar 

  52. Hartmann, M.; Wiethoff, A. J.; Hentrich, H. R.; Rohrer, M. Initial imaging recommendations for Vasovist angiography. Eur. Radiol. 2006, 16, B15–B23.

    Article  Google Scholar 

  53. Kroft, L. J. M.; de Roos, A. Blood pool contrast agents for cardiovascular MR imaging. J. Magn. Reson. Imaging 1999, 10, 395–403.

    Article  Google Scholar 

  54. Goyen, M. Gadofosveset-enhanced magnetic resonance angiography. Vasc. Health Risk Manag. 2008, 4, 1–9.

    Article  Google Scholar 

  55. Port, M.; Corot, C.; Violas, X.; Robert, P.; Raynal, I.; Gagneur, G. How to compare the efficiency of albumin-bound and nonalbumin-bound contrast agents in vivo: The concept of dynamic relaxivity. Invest. Radiol. 2005, 40, 565–573.

    Article  Google Scholar 

  56. Henrotte, V.; Vander Elst, L.; Laurent, S.; Muller, R. N. Comprehensive investigation of the non-covalent binding of MRI contrast agents with human serum albumin. J. Biol. Inorg. Chem. 2007, 12, 929–937.

    Article  Google Scholar 

  57. Klessen, C.; Hein, P. A.; Huppertz, A.; Voth, M.; Wagner, M.; Elgeti, T.; Kroll, H.; Hamm, B.; Taupitz, M.; Asbach, P. First-pass whole-body magnetic resonance angiography (MRA) using the blood-pool contrast medium gadofosveset trisodium: Comparison to gadopentetate dimeglumine. Invest. Radiol. 2007, 42, 659–664.

    Article  Google Scholar 

  58. Wang, S. C.; Wikström, M. G.; White, D. L.; Klaveness, J.; Holtz, E.; Rongved, P.; Moseley, M. E.; Brasch, R. C. Evaluation of Gd-DTPA-labeled dextran as an intravascular MR contrast agent: Imaging characteristics in normal rat tissues. Radiology 1990, 175, 483–488.

    Article  Google Scholar 

  59. Bennett, C. L.; Qureshi, Z. P.; Sartor, A. O.; Norris, L. B.; Murday, A.; Xirasagar, S.; Thomsen, H. S. Gadoliniuminduced nephrogenic systemic fibrosis: The rise and fall of an iatrogenic disease. Clin. Kidney J. 2012, 5, 82–88.

    Article  Google Scholar 

  60. Prince, M. R.; Zhang, H.; Zou, Z; Staron, R. B.; Brill, P. W. Incidence of immediate gadolinium contrast media reactions. AJR Am. J. Roentgenol. 2011, 196, W138–W143.

    Article  Google Scholar 

  61. Beomonte Zobel, B.; Quattrocchi, C. C.; Errante, Y.; Grasso, R. F. Gadolinium-based contrast agents: Did we miss something in the last 25 years? Radiol. Med. 2016, 121, 478–481.

    Article  Google Scholar 

  62. Lohrke, J.; Frenzel, T.; Endrikat, J.; Alves, F. C.; Grist, T. M.; Law, M.; Lee, J. M.; Leiner, T.; Li, K. C.; Nikolaou, K. et al. 25 years of contrast-enhanced MRI: Developments, current challenges and future perspectives. Adv. Ther. 2016, 33, 1–28.

    Article  Google Scholar 

  63. Parker, D. Rare earth coordination chemistry in action: Exploring the optical and magnetic properties of lanthanides in biosciences while challenging current theories. In Handbook on the Physics and Chemistry of Rare Earths: Including Actinides. Bünzli, J.-C.G.; Pecharsky, V.K., Eds.; Elsevier B.V.: The Netherlands, 2016.

    Google Scholar 

  64. Khawaja, A. Z.; Cassidy, D. B.; Al Shakarchi, J.; McGrogan, D. G.; Inston, N. G.; Jones, R. G. Revisiting the risks of MRI with Gadolinium based contrast agents-review of literature and guidelines. Insights Imaging 2015, 6, 553–558.

    Article  Google Scholar 

  65. European public assessment report (EPAR) [Online]. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_- _Summary_for_the_public/human/000137/WC500036330.pdf. (accessed Aug 2, 2016).

  66. Kravtzoff, R.; Urvoase, E.; Chambon, C.; Ropars, C. Gd-DOTA loaded into red blood cells, a new magnetic resonance imaging contrast agents for vascular system. Adv. Exp. Med. Biol. 1992, 326, 347–354.

    Google Scholar 

  67. Johnson, K. M.; Tao, J. Z.; Kennan, R. P.; Gore, J. C. Gadolinium-bearing red cells as blood pool MRI contrast agents. Magn. Reson. Med. 1998, 40, 133–142.

    Article  Google Scholar 

  68. Brown, S. L.; Ewing, J. R.; Nagaraja, T. N.; Swerdlow, P. S.; Cao, Y.; Fenstermacher, J. D.; Kim, J. H. Sickle red blood cells accumulate in tumor. Magn. Reson. Med. 2003, 50, 1209–1214.

    Article  Google Scholar 

  69. Ferrauto, G.; Di Gregorio, E.; Dastrù, W.; Lanzardo, S.; Aime, S. Gd-loaded-RBCs for the assessment of tumor vascular volume by contrast-enhanced-MRI. Biomaterials 2015, 58, 82–92.

    Article  Google Scholar 

  70. Di Gregorio, E.; Ferrauto, G.; Gianolio, E.; Lanzardo, S.; Carrera, C.; Fedeli, F.; Aime, S. An MRI method to map tumor hypoxia using red blood cells loaded with a pO2-responsive Gd-agent. ACS Nano 2015, 9, 8239–8248.

    Article  Google Scholar 

  71. Aime, S.; Digilio, G.; Fasano, M.; Paoletti, S.; Arnelli, A.; Ascenzi, P. Metal complexes as allosteric effectors of human hemoglobin: An NMR study of the interaction of the gadolinium(III) bis(m-boroxyphenylamide)diethylenetriaminepentaacetic acid complex with human oxygenated and deoxygenated hemoglobin. Biophys. J. 1999, 76, 2735–2743.

    Article  Google Scholar 

  72. Yuan, Y.; Tam, M. F.; Simplaceanu, V.; Ho, C. New look at hemoglobin allostery. Chem. Rev. 2015, 115, 1702–1724.

    Article  Google Scholar 

  73. Ferrauto, G.; Delli Castelli, D.; Di Gregorio, E.; Langereis, S.; Burdinski, D.; Grüll, H.; Terreno, E.; Aime, S. Lanthanideloaded erythrocytes as highly sensitive chemical exchange saturation transfer MRI contrast agents. J. Am. Chem. Soc. 2014, 136, 638–641.

    Article  Google Scholar 

  74. Burdinski, D.; Pikkemaat, J. A.; Emrullahoglu, M.; Costantini, F.; Verboom, W.; Langereis, S.; Grüll, H.; Huskens, J. Targeted LipoCEST contrast agents for magnetic resonance imaging: Alignment of aspherical liposomes on a capillary surface. Angew. Chem., Int. Ed. 2010, 49, 2227–2229.

    Article  Google Scholar 

  75. Aime, S.; Delli Castelli, D.; Terreno, E. Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew. Chem., Int. Ed. 2005, 44, 5513–5515.

    Article  Google Scholar 

  76. Ferrauto, G.; Delli Castelli, D.; Di Gregorio, E.; Terreno, E.; Aime, S. LipoCEST and cellCEST imaging agents: Opportunities and challenges. WIREs Nanomed. Nanobiotechnol. 2016, 8, 602–618.

    Article  Google Scholar 

  77. Terreno, E.; Delli Castelli, D.; Violante, E.; Sanders, H. M. H. F.; Sommerdijk, N. A. J. M.; Aime, S. Osmotically shrunken LIPOCEST agents: An innovative class of magnetic resonance imaging contrast media based on chemical exchange saturation transfer. Chemistry 2009, 15, 1440–1448.

    Article  Google Scholar 

  78. Aime, S.; Delli Castelli, D.; Terreno, E. Lanthanide-loaded paramagnetic liposomes as switchable magnetically oriented nanovesicles. Methods Enzymol. 2009, 464, 193–210.

    Article  Google Scholar 

  79. Ferrauto, G.; Di Gregorio, E.; Baroni, S.; Aime, S. Frequencyencoded MRI-CEST agents based on paramagnetic liposomes/RBC aggregates. Nano Lett. 2014, 14, 6857–6862.

    Article  Google Scholar 

  80. McMahon, M. T.; Gilad, A. A.; DeLiso, M. A.; Berman, S. M. C.; Bulte, J. W. M.; van Zijl, P. C. M. New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med. 2008, 60, 803–812.

    Article  Google Scholar 

  81. Aryal, S.; Stigliano, C.; Key, J.; Ramirez, M.; Anderson, J.; Karmonik, C.; Fung, S.; Decuzzi, P. Paramagnetic Gd3+ labeled red blood cells for magnetic resonance angiography. Biomaterials 2016, 98, 163–170.

    Article  Google Scholar 

  82. Eisenberg, A. D.; Conturo, T. E.; Wehr, C. J.; Schwartzberg, M. S. Method of magnetic resonance imaging using chromium-labelled red blood cells. U.S. Patent 4,669,481, June 2, 1987.

    Google Scholar 

  83. Eisenberg, A. D.; Conturo, T. E.; Price, R. R.; Holburn, G. E.; Partain, C. L.; James, A. E., Jr. AUR memorial award—1988. MRI enhancement of perfused tissues using chromium labeled red blood cells as an intravascular contrast agent. Invest. Radiol. 1989, 24, 742–753.

    Article  Google Scholar 

  84. Hunt, R. H.; Bowen, B.; Mortensen, E. R.; Simon, T. J.; James, C.; Cagliola, A.; Quan, H.; Bolognese, J. A. A randomized trial measuring fecal blood loss after treatment with rofecoxib, ibuprofen, or placebo in healthy subjects. Am. J. Med. 2000, 109, 201–206.

    Article  Google Scholar 

  85. Bax, B. E.; Bain, M. D.; Talbot, P. J.; Parker-Williams, E. J.; Chalmers, R. A. Survival of human carrier erythrocytes in vivo. Clin. Sci. (Lond.) 1999, 96, 171–178.

    Article  Google Scholar 

  86. Moralidis, E.; Papanastassiou, E.; Arsos, G.; Chilidis, I.; Gerasimou, G.; Gotzamani-Psarrakou, A. A single measurement with 51Cr-tagged red cells or 125I-labeled human serum albumin in the prediction of fractional and whole blood volumes: An assessment of the limitations. Physiol. Meas. 2009, 30, 559–571.

    Article  Google Scholar 

  87. Camren, G. P.; Wilson, G. J.; Bamra, V. R.; Nguyen, K. Q.; Hippe, D. S.; Maki, J. H. A comparison between gadofosveset trisodium and gadobenate dimeglumine for steady state MRA of the thoracic vasculature. Biomed. Res. Int. 2014, 2014, 625614.

    Article  Google Scholar 

  88. Bremerich, J.; Bilecen, D.; Reimer, P. MR angiography with blood pool contrast agents. Eur. Radiol. 2007, 17, 3017–3024.

    Article  Google Scholar 

  89. Zhou, Z. J.; Wu, C. Q.; Liu, H. Y.; Zhu, X. L.; Zhao, Z. H.; Wang, L. R.; Xu, Y.; Ai, H.; Gao, J. H. Surface and interfacial engineering of iron oxide nanoplates for highly efficient magnetic resonance angiography. ACS Nano 2015, 9, 3012–3022.

    Article  Google Scholar 

  90. Jin, R. R.; Lin, B. B.; Li, D. Y.; Ai, H. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: Design considerations and clinical applications. Curr. Opin. Pharmacol. 2014, 18, 18–27.

    Article  Google Scholar 

  91. Lawaczeck, R.; Menzel, M.; Pietsch, H. Superparamagnetic iron oxide particles: Contrast media for magnetic resonance imaging. Appl. Organometal. Chem. 2004, 18, 506–513.

    Article  Google Scholar 

  92. Wahajuddin; Arora, S. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 2012, 7, 3445–3471.

    Article  Google Scholar 

  93. Yancy, A. D.; Olzinski, A. R.; Hu, T. C. C.; Lenhard, S. C.; Aravindhan, K.; Gruver, S. M.; Jacobs, P. M.; Willette, R. N.; Jucker, B. M. Differential uptake of ferumoxtran-10 and ferumoxytol, ultrasmall superparamagnetic iron oxide contrast agents in rabbit: Critical determinants of atherosclerotic plaque labeling. J. Magn. Reson. Imaging 2005, 21, 432–442.

    Article  Google Scholar 

  94. Bourrinet, P.; Bengele, H. H.; Bonnemain, B.; Dencausse, A.; Idee, J. M.; Jacobs, P. M.; Lewis, J. M. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest. Radiol. 2006, 41, 313–324.

    Article  Google Scholar 

  95. Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K. M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607.

    Article  Google Scholar 

  96. Reimer, P.; Marx, C.; Rummeny, E. J.; Müller, M.; Lentschig, M.; Balzer, T.; Dietl, K. H.; Sulkowski, U.; Berns, T.; Shamsi, K. et al. SPIO-enhanced 2D-TOF MR angiography of the portal venous system: Results of an intraindividual comparison. J. Magn. Reson. Imaging 1997, 7, 945–949.

    Article  Google Scholar 

  97. Reimer, P.; Balzer, T. Ferucarbotran (Resovist): A new clinically approved RES-specific contrast agent for contrastenhanced MRI of the liver: Properties, clinical development, and applications. Eur. Radiol. 2003, 13, 1266–1276.

    Google Scholar 

  98. Wang, Y.-X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.

    Google Scholar 

  99. Maes, R. M.; Lewin, J. S.; Duerk, J. L. Misselwitz, B.; Kiewiet, C. J. M.; Wacker, F. K. A new type of susceptibility-artefact-based magnetic resonance angiography: Intra-arterial injection of superparamagnetic iron oxide particles (SPIO) A Resovist® in combination with TrueFisp imaging: A feasibility study. Contrast Media Mol. Imaging 2006, 1, 189–195.

    Article  Google Scholar 

  100. Gozzi, A.; Tessari, M.; Dacome, L.; Agosta, F.; Lepore, S.; Lanzoni, A.; Cristofori, P.; Pich, E. M.; Corsi, M.; Bifone, A. Neuroimaging evidence of altered fronto-cortical and striatal function after prolonged cocaine self-administration in the rat. Neuropsychopharmacology 2011, 36, 2431–2440.

    Article  Google Scholar 

  101. Weissleder, R.; Bogdanov, A.; Neuwelt, E. A.; Papisov, M. Long-circulating iron oxides for MR imaging. Adv. Drug Deliv. Rev. 1995, 16, 321–334.

    Article  Google Scholar 

  102. Bremer, C.; Allkemper, T.; Baermig, J.; Reimer, P. RESspecific imaging of the liver and spleen with iron oxide particles designed for blood pool MR-angiography. J. Magn. Reson. Imaging 1999, 10, 461–467.

    Article  Google Scholar 

  103. Schnorr, J.; Taupitz, M.; Schellenberger, E. A.; Warmuth, C.; Fahlenkamp, U. L.; Wagner, S.; Kaufels, N.; Wagner, M. Cardiac magnetic resonance angiography using blood-pool contrast agents: Comparison of citrate-coated very small superparamagnetic iron oxide particles with gadofosveset trisodium in pigs. RöFo 2012, 184, 105–112.

    Google Scholar 

  104. Di Marco, M.; Sadun, C.; Port, M.; Guilbert, I.; Couvreur, P.; Dubernet, C. Physicochemical characterization of ultrasmall superparamagnetic iron oxide particles (USPIO) for biomedical application as MRI contrast agents. Int. J. Nanomedicine 2007, 2, 609–622.

    Google Scholar 

  105. Cicha, I.; Garlichs, C. D.; Alexiou, C. Cardiovascular therapy through nanotechnology-how far are we still from bedside? Eur. J. Nanomed. 2014, 6, 63–87.

    Article  Google Scholar 

  106. Ploussi, A. G.; Gazouli, M.; Stathis, G.; Kelekis, N. L.; Efstathopoulos, E. P. Iron oxide nanoparticles as contrast agents in molecular magnetic resonance imaging: Do they open new perspectives in cardiovascular imaging? Cardiol. Rev. 2015, 23, 229–235.

    Article  Google Scholar 

  107. Corot, C.; Port, M.; Guilbert, I.; Robert, P.; Raynal, I.; Robic, C.; Raynaud, J.-S.; Prigent, P.; Dencausse, A.; Idée, J. M. Superparamagnetic contrast agents. In Molecular and Cellular MR Imaging. Modo, M. M. J.; Bulte J. W. M., Eds.; CRC Press: Boca Raton, 2007; pp 59–84.

    Google Scholar 

  108. Tang, T. Y.; Muller, K. H.; Graves, M. J.; Li, Z. Y.; Walsh, S. R.; Young, V.; Sadat, U., Howarth, S. P. S.; Gillard, J. H. Iron oxide particles for atheroma imaging. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1001–1008.

    Article  Google Scholar 

  109. Tanimoto, A.; Yuasa, Y.; Hiramatsu, K. Enhancement of phase-contrast MR angiography with superparamagnetic iron oxide. J. Magn. Reson. Imaging 1998, 8, 446–450.

    Article  Google Scholar 

  110. Mayo-Smith, W. W.; Saini, S.; Slater, G.; Kaufman, J. A.; Sharma, P.; Hahn, P. F. MR contrast material for vascular enhancement: Value of superparamagnetic iron oxide. AJR Am. J. Roentgenol. 1996, 166, 73–77.

    Article  Google Scholar 

  111. Stillman, A. E.; Wilke, N.; Jerosch-Herold, M. Use of an intravascular T1 contrast agent to improve MR cine myocardial-blood pool definition in man. J. Magn. Reson. Imaging 1997, 7, 765–767.

    Article  Google Scholar 

  112. Harisinghani, M. G.; Barentsz, J.; Hahn, P. F.; Deserno, W. M.; Tabatabaei, S.; van de Kaa, C. H.; de la Rosette, J.; Weissleder, R. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 2003, 348, 2491–2499.

    Article  Google Scholar 

  113. Fortuin, A. S.; Meijer, H.; Thompson, L. C.; Witjes, J. A.; Barentsz, J. O. Ferumoxtran-10 ultrasmall superparamagnetic iron oxide-enhanced diffusion-weighted imaging magnetic resonance imaging for detection of metastases in normalsized lymph nodes in patients with bladder and prostate cancer: Do we enter the era after extended pelvic lymph node dissection? Eur. Urol. 2013, 64, 961–963.

    Article  Google Scholar 

  114. Heesakkers, R. A. M.; Jager, G. J.; Hövels, A. M.; de Hoop, B.; van den Bosch, H. C. M.; Raat, F.; Witjes, J. A.; Mulders, P. F. A.; van der Kaa, C. H.; Barentsz, J. O. Prostate cancer: Detection of lymph node metastases outside the routine surgical area with ferumoxtran-10- enhanced MR imaging. Radiology 2009, 251, 408–414.

    Article  Google Scholar 

  115. European Medicines Authority. Withdrawal Assessment Report for Sinerem [Online]. http://www.ema.europa.eu/ docs/en_GB/document_library/Application_withdrawal_ assessment_report/2010/01/WC500067463.pdf. (accessed Aug 2, 2016).

    Google Scholar 

  116. EMA. Withdrawal of the application for a change to the marketing authorisation for Rienso (ferumoxytol) [Online]. Available from: http://www.ema.europa.eu/docs/en_GB/ document_library/Medicine_QA/2015/02/WC500183309. pdf. (accessed Aug 2, 2016).

    Google Scholar 

  117. Ersoy, H.; Jacobs, P.; Kent, C. K.; Prince, M. R. Blood pool MR angiography of aortic stent-graft endoleak. AJR Am. J. Roentgenol. 2004, 182, 1181–1186.

    Article  Google Scholar 

  118. Landry, R.; Jacobs, P. M.; Davis, R.; Shenouda, M.; Bolton, W. K. Pharmacokinetic study of ferumoxytol: A new iron replacement therapy in normal subjects and hemodialysis patients. Am. J. Nephrol. 2005, 25, 400–410.

    Article  Google Scholar 

  119. Neuwelt, E. A.; Hamilton, B. E.; Varallyay, C. G.; Rooney, W. R.; Edelman, R. D.; Jacobs, P. M.; Watnick, S. G. Ultrasmall superparamagnetic iron oxides (USPIOs): A future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int. 2009, 75, 465–474.

    Article  Google Scholar 

  120. Sigovan, M.; Gasper, W.; Alley, H. F.; Owens, C. D.; Saloner, D. USPIO-enhanced MR angiography of arteriovenous fistulas in patients with renal failure. Radiology 2012, 265, 584–590.

    Article  Google Scholar 

  121. Stabi, K. L.; Bendz, L. M. Ferumoxytol use as an intravenous contrast agent for magnetic resonance angiography. Ann. Pharmacother. 2011, 45, 1571–1575.

    Article  Google Scholar 

  122. Bashir, M. R.; Bhatti, L.; Marin, D.; Nelson, R. C. Emerging applications for ferumoxytol as a contrast agent in MRI. J. Magn. Reson. Imaging 2015, 41, 884–898.

    Article  Google Scholar 

  123. Li, W.; Tutton, S.; Vu, A. T.; Pierchala, L.; Li, B. S. Y.; Lewis, J. M.; Prasad, P. V.; Edelman, R. R. First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J. Magn. Reson. Imaging 2005, 21, 46–52.

    Article  Google Scholar 

  124. Bashir, M. R.; Mody, R.; Neville, A.; Javan, R.; Seaman, D.; Kim, C. Y.; Gupta, R. T.; Jaffe, T. A. Retrospective assessment of the utility of an iron-based agent for contrastenhanced magnetic resonance venography in patients with endstage renal diseases. J. Magn. Reson. Imaging 2014, 40, 113–118.

    Article  Google Scholar 

  125. Ruangwattanapaisarn, N.; Hsiao, A.; Vasanawala, S. S. Ferumoxytol as an off-label contrast agent in body 3T MR angiography: A pilot study in children. Pediatr. Radiol. 2015, 45, 831–839.

    Article  Google Scholar 

  126. U.S. Department of Health and Human Services. FDA drug safety communication: FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme (ferumoxytol) [Online]. http://www.fda.gov/Drugs/DrugSafety/ucm440138.htm (accessed Aug 2, 2016).

    Google Scholar 

  127. Klein, C.; Nagel, E.; Schnackenburg, B.; Bornstedt, A.; Schalla, S.; Hoffmann, V.; Lehning, A.; Fleck, E. The intravascular contrast agent Clariscan (NC 100150 injection) for 3D MR coronary angiography in patients with coronary artery disease. MAGMA 2000, 11, 65–67.

    Article  Google Scholar 

  128. Sandstede, J. J.; Krause, U.; Pabst, T.; Hoffmann, V.; Braun, H.; Kenn, W.; Hahn, D. Deep venous thrombosis and consecutive pulmonary embolism as the first sign of an ovarian cancer: MR angiography using an intravascular contrast agent (CLARISCAN). J. Magn. Reson. Imaging 2000, 12, 497–500.

    Article  Google Scholar 

  129. Tombach, B.; Reimer, P.; Bremer, C.; Allkemper, T.; Engelhardt, M.; Mahler, M.; Ebert, W.; Heindel, W. Firstpass and equilibrium-MRA of the aortoiliac region with a superparamagnetic iron oxide blood pool MR contrast agent (SH U 555 C): Results of a human pilot study. NMR Biomed. 2004, 17, 500–506.

    Article  Google Scholar 

  130. Reimer, P.; Bremer, C.; Allkemper, T.; Engelhardt, M.; Mahler, M.; Ebert, W.; Tombach, B. Myocardial perfusion and MR angiography of chest with SH U 555 C: Results of placebo-controlled clinical phase i study. Radiology 2004, 231, 474–481.

    Article  Google Scholar 

  131. Kinner, S.; Maderwald, S.; Parohl, N.; Albert, J.; Corot, C., Robert, P.; Barkhausen, J.; Vogt, F. M. Contrast-enhanced magnetic resonance angiography in rabbits: Evaluation of the gadolinium-based agent p846 and the iron-based blood pool agent p904 in comparison with gadoterate meglumine. Invest. Radiol. 2011, 46, 524–549.

    Article  Google Scholar 

  132. Trotier, A. J.; Lefrançois, W.; Van Renterghem, K.; Franconi, J. M.; Thiaudière, E.; Miraux, S. Positive contrast high-resolution 3D-cine imaging of the cardiovascular system in small animals using a UTE sequence and iron nanoparticles at 4.7, 7 and 9.4 T. J. Cardiovasc. Magn. Reson. 2015, 17, 53.

    Article  Google Scholar 

  133. Taupitz, M.; Wagner, S.; Schnorr, J.; Kravec, I.; Pilgrimm, H.; Bergmann-Fritsch, H.; Hamm, B. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest. Radiol. 2004, 39, 394–405.

    Article  Google Scholar 

  134. Wagner, M.; Wagner, S.; Schnorr, J.; Schellenberger, E.; Kivelitz, D.; Krug, L.; Dewey, M.; Laule, M.; Hamm, B.; Taupitz, M. Coronary MR angiography using citrate coated very small superparamagnetic iron oxide particles as blood-pool contrast agent: Initial experience in humans. J. Magn. Reson. Imaging 2011, 34, 816–823.

    Article  Google Scholar 

  135. Sprandel, U.; Lanz, D. J.; von Hörsten, W. Magnetically responsive erythrocyte ghosts. Methods Enzymol. 1987, 149, 301–312.

    Article  Google Scholar 

  136. Vyas, S. P.; Jain, S. K. Preparation and in vitro characterization of a magnetically responsive ibuprofen-loaded erythrocytes carrier. J. Microencapsul. 1994, 11, 19–29.

    Article  Google Scholar 

  137. Jain, S. K.; Vyas, S. P. Magnetically responsive diclofenac sodium-loaded erythrocytes: Preparation and in vitro characterization. J. Microencapsul. 1994, 11, 141–151.

    Article  Google Scholar 

  138. Field, W. N.; Gamble, M. D.; Lewis, D. A. A comparison of the treatment of thyroidectomized rats with free thyroxine and thyroxine encapsulated in erythrocytes. Int. J. Pharmacol. 1989, 51, 175–178.

    Article  Google Scholar 

  139. Sprandel, U.; Zöllner, N. Osmotic fragility of drug carrier erythrocytes. Res. Exp. Med. (Berl) 1985, 185, 77–85.

    Article  Google Scholar 

  140. Orekhova, N. M.; Akchurin, R. S.; Belyaev, A. A.; Smirnov, M. D.; Ragimov, S. E.; Orekhov, A. N. Local prevention of trombosis in animal arteries by means of magnetic targeting of aspirin-loaded red cells. Thromb. Res. 1990, 57, 611–616.

    Article  Google Scholar 

  141. Brähler, M.; Georgieva, R.; Buske, N.; Müller, A.; Müller, S.; Pinkernelle, J.; Teichgräber, U.; Voigt, A.; Bäumler, H. Magnetite-loaded carrier erythrocytes as contrast agents for magnetic resonance imaging. Nano Lett. 2006, 6, 2505–2509.

    Article  Google Scholar 

  142. Sternberg, N.; Georgieva, R.; Duft, K.; Bäumler, H. Surfacemodified loaded human red blood cells for targeting and delivery of drugs. J. Microencapsul. 2012, 29, 9–20.

    Article  Google Scholar 

  143. Magnani, M.; Rossi, L.; Fraternale, A.; Bianchi, M.; Antonelli, A.; Crinelli, R.; Chiarantini, L. Erythrocytemediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther. 2002, 9, 749–751.

    Article  Google Scholar 

  144. Rossi, L.; Serafini, S.; Pierigé, F.; Antonelli, A.; Cerasi, A.; Fraternale, A., Chiarantini, L.; Magnani, M. Erythrocyte based drug delivery. Expert Opin. Drug Deliv. 2005, 2, 311–322.

    Article  Google Scholar 

  145. Magnani, M.; Serafini, S.; Fraternale, A.; Antonelli, A.; Biagiotti, S.; Pierigè, F.; Sfara, C.; Rossi, L. In Encyclopedia of Nanoscience and Nanotechnology. Nalwa, H. S., Ed.; American Scientific Publishers: Los Angeles, 2011; pp 309–354.

  146. Antonelli, A.; Sfara, C.; Mosca, L.; Manuali, E.; Magnani, M. New biomimetic constructs for improved in vivo circulation of superparamagnetic nanoparticles. J. Nanosci. Nanotechnol. 2008, 8, 2270–2278.

    Article  Google Scholar 

  147. Antonelli, A.; Sfara, C.; Manuali, E.; Bruce, I. J.; Magnani, M. Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine (Lond.) 2011, 6, 211–223.

    Article  Google Scholar 

  148. Antonelli, A.; Sfara, C.; Weber, O.; Pison, U.; Manuali, E.; Salamida, S.; Magnani, M. Characterization of ferucarbotranloaded RBCs as long circulating magnetic contrast agents. Nanomedicine (Lond.) 2016, 11, 2781–2795.

    Google Scholar 

  149. Antonelli, A.; Sfara, C.; Battistelli, S.; Canonico, B.; Arcangeletti, M.; Manuali, E., Salamida, S.; Papa, S.; Magnani, M. New strategies to prolong the in vivo life span of iron-based contrast agents for MRI. PLoS One 2013, 8, e78542.

    Article  Google Scholar 

  150. Magnani, M.; Antonelli, A. Delivery of contrasting agents for magnetic resonance imaging. WIPO Patent Application WO/2008/003524, January 10, 2008.

    Google Scholar 

  151. Magnani, M.; Laguerre, M.; Rossi, L.; Bianchi, M.; Ninfali, P.; Mangani, F.; Ropars, C. In vivo accelerated acetaldehyde metabolism using acetaldehyde dehydrogenase-loaded erythrocytes. Alcohol Alcohol. 1990, 25, 627–637.

    Google Scholar 

  152. Weizenecker, J.; Gleich, B.; Rahmer, J.; Dahnke, H.; Borgert, J. Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 2009, 54, L1–L10.

    Article  Google Scholar 

  153. Borgert, J.; Schmidt, J. D.; Schmale, I.; Rahmer, J.; Bontus, C.; Gleich, B.; David, B.; Eckart, R.; Woywode, O.; Weizenecker, J. et al. Fundamentals and applications of magnetic particle imaging. J. Cardiovasc. Comput. Tomogr. 2012, 6, 149–153.

    Article  Google Scholar 

  154. Panagiotopoulos, N.; Duschka, R. L.; Ahlborg, M.; Bringout, G.; Debbeler, C.; Graeser, M.; Kaethner, C.; Lüdtke-Buzug, K.; Medimagh, H.; Stelzner, J. et al. Magnetic particle imaging: Current developments and future directions. Int. J. Nanomedicine 2015, 10, 3097–3114.

    Article  Google Scholar 

  155. Markov, D. E.; Boeve, H.; Gleich, B.; Borgert, J.; Antonelli, A.; Sfara, C.; Magnani, M. Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys. Med. Biol. 2010, 55, 6461–6473.

    Article  Google Scholar 

  156. Takeuchi, Y.; Suzuki, H.; Sasahara, H.; Ueda, J.; Yabata, I.; Itagaki, K.; Saito, S.; Murase, K. Encapsulation of iron oxide nanoparticles into red blood cells as a potential contrast agent for magnetic particle imaging. Adv. Biomed. Eng. 2014, 3, 37–43.

    Article  Google Scholar 

  157. Rahmer, J.; Antonelli, A.; Sfara, C.; Tiemann, B.; Gleich, B.; Magnani, M.; Weizenecker, J.; Borgert, J. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection. Phys. Med. Biol. 2013, 58, 3965–3977.

    Article  Google Scholar 

  158. Ferguson, R. M.; Khandhar, A. P.; Kemp, S. J.; Arami, H.; Saritas, E. U.; Croft, L. R.; Konkle, J.; Goodwill, P. W.; Halkola, A.; Rahmer, J. et al. Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans. Med. Imaging 2015, 34, 1077–1084.

    Article  Google Scholar 

  159. Antonelli, A.; Sfara, C.; Manuali, E.; Salamida, S.; Louin, G.; Magnani, M. Magnetic red blood cells as new contrast agents for MRI applications. In Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging. Weaver, J. B.; Molthen, R. C., Eds., SPIE: Lake Buena Vista, FL, 2013.

    Google Scholar 

  160. Boni, A.; Ceratti, D.; Antonelli, A.; Sfara, C.; Magnani, M.; Manuali, E.; Salamida, S.; Gozzi, A.; Bifone, A. USPIO-loaded red blood cells as a biomimetic MR contrast agent: A relaxometric study. Contrast Media Mol. Imaging 2014, 9, 229–236.

    Article  Google Scholar 

  161. Casula, M. F.; Corrias, A.; Arosio, P.; Lascialfari, A.; Sen, T.; Floris, P.; Bruce, I. J. Design of water-based ferrofluids as contrast agents for magnetic resonance imaging. J. Colloid Interface Sci. 2011, 357, 50–55.

    Article  Google Scholar 

  162. Technetium-99m radiopharmaceuticals: Status and trends, IAEA radioisotopes and radiopharmaceuticals series publications [Online]. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1405_web.pdf. (accessed Aug 1, 2016).

  163. Busatto, G. F.; Zamignani, D. R.; Buchpiguel, C. A.; Garrido, G. E. J.; Glabus, M. F.; Rocha, E. T.; Maia, A. F.; Rosario-Campos, M. C.; Campi Castro, C.; Furuie, S. S. et al. A voxel-based investigation of regional cerebral blood flow abnormalities in obsessive-compulsive disorder using single photon emission computed tomography (SPECT). Psychiatry Res. 2000, 99, 15–27.

    Article  Google Scholar 

  164. Song, S. H.; Kwak, I. S.; Kim, S. J.; Kim, Y. K.; Kim, I. J. Depressive mood in pre-dialytic chronic kidney disease: Statistical parametric mapping analysis of Tc-99m ECD brain SPECT. Psychiatry Res. 2009, 173, 243–247.

    Article  Google Scholar 

  165. UltraTag™ RBC package insert [Online]. http://www2.mallinckrodt.com/Nuclear_Imaging/Ultratag_RBC.aspx (accessed Aug 2, 2016).

  166. Spicer, J. A.; Hladik, W. B., III; Mulberry, W. E. The effects of selected antineoplastic agents on the labeling of erythrocytes with technetium-99m using the UltraTag RBC kit. J. Nucl. Med. Technol. 1999, 27, 132–135.

    Google Scholar 

  167. Patrick, S. T.; Glowniak, J. V.; Turner, F. E.; Robbins, M. S.; Wolfangel, R. G. Comparison of in vitro RBC labeling with the UltraTag™ RBC kit versus in vivo labeling. J. Nucl. Med. 1991, 32, 242–244.

    Google Scholar 

  168. Taylor, A.; Schuster, D. M.; Alazraki, N. A Clinician’s Guide to Nuclear Medicine; 2nd ed.; Society of Nuclear Medicine: Reston, 2006.

    Google Scholar 

  169. Gomes, M. L.; Oliveira, M. B. N. de; Bernardo-Filho, M. Drug interaction with radiopharmaceuticals: Effect on the labeling of red blood cells with technetium-99m and on the bioavailability of radiopharmaceuticals. Braz. Arch. Biol. Technol. 2002, 45, 143–149.

    Article  Google Scholar 

  170. Grady, E. Gastrointestinal bleeding scintigraphy in the early 21st century. J. Nucl. Med. 2016, 57, 252–259.

    Article  Google Scholar 

  171. Tabibian, J. H.; Wong Kee Song, L. M.; Enders, F. B.; Aguet, J. C.; Tabibian, N. Technetium-labeled erythrocyte scintigraphy in acute gastrointestinal bleeding. Int. J. Colorectal Dis. 2013, 28, 1099–1105.

    Article  Google Scholar 

  172. Miller, M. J.; Smith, T. P. Thoracic, pulmonary arteries, and peripheral vascular disorders. In Fundamentals of Diagnostic Radiology, 4th ed. Brant, W. E., Helms, C. A., Eds.; Wolters Kluwer: Philadelphia, PA, 2012; pp 618–640.

    Google Scholar 

  173. Balci, T. A.; Ciftci, I.; Karaoglu, A. Incidental DTPA and DMSA uptake during renal scanning in unknown bone metastases. Ann. Nucl. Med. 2006, 20, 365–369.

    Article  Google Scholar 

  174. Bennett, P. Section 1: Cardiac. In Diagnostic Imaging: Nuclear Medicine, 2nd ed. Bennett, P. A.; Oza, U. D., Eds.; Elsevier: Philadelphia, PA, 2015, pp 4–23.

    Google Scholar 

  175. Hesse, B.; Lindhardt, T. B.; Acampa, W.; Anagnostopoulos, C.; Ballinger, J.; Bax, J. J.; Edenbrandt, L.; Flotats, A.; Germano, G.; Stopar, T. G. et al. EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 851–885.

    Article  Google Scholar 

  176. Atkins, H. L.; Goldman, A. G.; Fairchild, R. G.; Oster, Z. H.; Som, P.; Richards, P.; Meinken, G. E.; Srivastava, S. C. Splenic sequestration of 99mTc labeled, heat treated red blood cells. Radiology 1980, 136, 501–503.

    Article  Google Scholar 

  177. De Porto, A. P. N. A.; Lammers, A. J. J.; Bennink, R. J.; ten Berge, I. J. M.; Speelman, P.; Hoekstra, J. B. L. Assessment of splenic function. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1465–1473.

    Article  Google Scholar 

  178. Phom, H.; Kumar, A.; Tripathi, M.; Chandrashekar, N.; Choudhry, V. P.; Malhotra, A.; Bal, C. S. Comparative evaluation of Tc-99m-heat-denatured RBC and Tc-99manti- D IgG opsonized RBC spleen planar and SPECT scintigraphy in the detection of accessory spleen in postsplenectomy patients with chronic idiopathic thrombocytopenic purpura. Clin. Nucl. Med. 2004, 29, 403–409.

    Article  Google Scholar 

  179. Srivastava, S. C.; Chervu, L. R. Radionuclide-labeled red blood cells: Current status and future prospects. Semin. Nucl. Med. 1984, 14, 68–82.

    Article  Google Scholar 

  180. Burroni, L.; Borsari, G.; Pichierri, P.; Polito, E.; Toscano, O.; Grassetto, G.; Al-Nahhas, A.; Rubello, D.; Vattimo, A. G. Preoperative diagnosis of orbital cavernous hemangioma: A 99mTc-RBC SPECT study. Clin. Nucl. Med. 2012, 37, 1041–1046.

    Article  Google Scholar 

  181. Wu, C.; Zhang, B. H.; Chen, L.; Zhang, B. X.; Chen, X. P. Solitary perihepatic splenosis mimicking liver lesion: A case report and literature review. Medicine 2015, 94, e586.

    Article  Google Scholar 

  182. Kearfott, K. J. Absorbed dose estimates for positron emission tomography (PET): C15O, 11CO, and CO15O. J. Nucl. Med. 1982, 23, 1031–1037.

    Google Scholar 

  183. Brooks, D. J.; Beaney, R. P.; Lammertsma, A. A.; Turton, D. R.; Marshall, J.; Thomas, D. G. T.; Jones, T. Studies on regional cerebral haematocrit and blood flow in patients with cerebral tumours using positron emission tomography. Microvasc. Res. 1986, 31, 267–276.

    Article  Google Scholar 

  184. Ibaraki, M.; Shinohara, Y.; Nakamura, K.; Miura, S.; Kinoshita, F.; Kinoshita, T. Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans. J. Cereb. Blood Flow Metab. 2010, 30, 1296–1305.

    Article  Google Scholar 

  185. Kurdziel, K. A.; Figg, W. D.; Carrasquillo, J. A.; Huebsch, S.; Whatley, M.; Sellers, D.; Libutti, S. K.; Pluda, J. M.; Dahut, W.; Reed, E. et al. Using positron emission tomography 2-deoxy-2-[18F]fluoro-D-glucose, 11CO, and 15O-water for monitoring androgen independent prostate cancer. Mol. Imaging Biol. 2003, 5, 86–93.

    Article  Google Scholar 

  186. Piao, R.; Oku, N.; Kitagawa, K.; Imaizumi, M.; Matsushita, K.; Yoshikawa, T.; Takasawa, M., Osaki, Y.; Kimura, Y.; Kajimoto, K. et al. Cerebral hemodynamics and metabolism in adult moyamoya disease: Comparison of angiographic collateral circulation. Ann. Nucl. Med. 2004, 18, 115–121.

    Article  Google Scholar 

  187. Diringer, M. N.; Videen, T. O.; Yundt, K.; Zazulia, A. R.; Aiyagari, V.; Dacey, R. G., Jr; Grubb, R. L.; Powers, W. J. Regional cerebrovascular and metabolic effects of hyperventilation after severe traumatic brain injury. J. Neurosurg. 2002, 96, 103–108.

    Article  Google Scholar 

  188. Derdeyn, C. P.; Videen, T. O.; Yundt, K. D.; Fritsch, S. M.; Carpenter, D. A.; Grubb, R. L.; Powers, W. J. Variability of cerebral blood volume and oxygen extraction: Stages of cerebral haemodynamic impairment revisited. Brain 2002, 125, 595–607.

    Article  Google Scholar 

  189. Kuroda, S.; Shiga, T.; Houkin, K.; Ishikawa, T.; Katoh, C.; Tamaki, N.; Iwasaki, Y. Cerebral oxygen metabolism and neuronal integrity in patients with impaired vasoreactivity attributable to occlusive carotid artery disease. Stroke 2006, 37, 393–398.

    Article  Google Scholar 

  190. Price, C. J. S.; Wang, D. C.; Menon, D. K.; Guadagno, J. V.; Cleij, M.; Fryer, T.; Aigbirhio, F.; Baron, J. C.; Warburton, E. A. Intrinsic activated microglia map to the peri-infarct zone in the subacute phase of ischemic stroke. Stroke 2006, 37, 1749–1753.

    Article  Google Scholar 

  191. Gheysens, O.; Akurathi, V.; Chekol, R.; Dresselaers, T.; Celen, S.; Koole, M.; Dauwe, D.; Cleynhens, B. J., Claus, P., Janssens, S. et al. Preclinical evaluation of carbon-11 and fluorine-18 sulfonamide derivatives for in vivo radiolabeling of erythrocytes. EJNMMI Res. 2013, 3, 4.

    Article  Google Scholar 

  192. Herance, J. R.; Gispert, J. D.; Abad, S.; Victor, V. M.; Pareto, D.; Torrent, È.; Rojas, S. Erythrocytes labeled with [18F]SFB as an alternative to radioactive CO for quantification of blood volume with PET. Contrast Media Mol. Imaging 2013, 8, 375–381.

    Article  Google Scholar 

  193. Leschka, S.; Husmann, L.; Desbiolles, L. M.; Gaemperli, O.; Schepis, T.; Koepfli, P.; Boehm, T.; Marincek, B.; Kaufmann, P. A.; Alkadhi, H. Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur. Radiol. 2006, 16, 1964–1972.

    Article  Google Scholar 

  194. Lell, M. M.; Anders, K.; Uder, M.; Klotz, E.; Ditt, H.; Vega-Higuera, F.; Boskamp, T.; Bautz, W. A.; Tomandl, B. F. New techniques in CT angiography. Radiographics 2006, 26, S45–S62.

    Article  Google Scholar 

  195. Kumamaru, K. K.; Hoppel, B. E.; Mather, R. T.; Rybicki, F. J. CT angiography: Current technology and clinical use. Radiol. Clin. North Am. 2010, 48, 213–235.

    Article  Google Scholar 

  196. Tamura, Y.; Utsunomiya, D.; Sakamoto, T.; Hirai, T.; Nishiharu, T.; Urata, J.; Yamashita, Y. Reduction of contrast material volume in 3D angiography of the brain using MDCT. AJR Am. J. Roentgenol. 2010, 195, 455–458.

    Article  Google Scholar 

  197. Waaijer, A.; Prokop, M.; Velthuis, B. K.; Bakker, C. J. G.; de Kort, G. A. P.; van Leeuwen, M. S. Circle of Willis at CT angiography: Dose reduction and image qualityreducing tube voltage and increasing tube current settings. Radiology 2007, 242, 832–839.

    Article  Google Scholar 

  198. Bhatt, S.; Rajpal, N.; Rathi, V.; Avasthi, R. Contrast induced nephropathy with intravenous iodinated contrast media in routine diagnostic imaging: An initial experience in a tertiary care hospital. Radiol. Res. Pract. 2016, 2016, Article ID 8792984.

    Google Scholar 

  199. Andreucci, M.; Solomon, R.; Tasanarong, A. Side effects of radiographic contrast media: Pathogenesis, risk factors, and prevention. Biomed Res. Int. 2014, 2014, 741018.

    Google Scholar 

  200. Seehofnerová, A.; Kok, M.; Mihl, C.; Douwes, D.; Sailer, A., Nijssen, E.; de Haan, M. J. W.; Wildberger, J. E.; Das, M. Feasibility of low contrast media volume in CT angiography of the aorta. Eur. J. Radiol. Open 2015, 2, 58–65.

    Article  Google Scholar 

  201. Shen, Y.; Sun, Z.; Xu, L.; Li, Y.; Zhang, N.; Yan, Z.; Fan, Z. High-pitch, low-voltage and low-iodine-concentration CT angiography of aorta: Assessment of image quality and radiation dose with iterative reconstruction. PLoS One 2015, 10, e0117469.

    Article  Google Scholar 

  202. Hudzik, B.; Zubelewicz-Szkodzińska, B. Radiocontrastinduced thyroid dysfunction: Is it common and what should we do about it? Clin Endocrinol (Oxf). 2014, 80, 322–327.

    Article  Google Scholar 

  203. Vera, D. R.; Mattrey, R. F. A molecular CT blood pool contrast agent. Acad. Radiol. 2002, 9, 784–792.

    Article  Google Scholar 

  204. Lusic, H.; Grinstaff, M. W. X-ray-computed tomography contrast agents. Chem. Rev. 2013, 113, 1641–1666.

    Article  Google Scholar 

  205. Hainfeld, J. F.; Slatkin, D. N.; Focella, T. M.; Smilowitz, H. M. Gold nanoparticles: A new X-ray contrast agent. Br. J. Radiol. 2006, 79, 248–253.

    Article  Google Scholar 

  206. Kim, D.; Park, S.; Lee, J. H.; Jeong, Y. Y., Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc. 2007, 129, 7661–7665.

    Article  Google Scholar 

  207. Sun, H. M.; Yuan, Q. H.; Zhang, B. H.; Ai, K. L.; Zhang, P. G.; Lu, L. H. Gd(III) functionalized gold nanorods for multimodal imaging applications. Nanoscale 2011, 3, 1990–1996.

    Article  Google Scholar 

  208. Hyafil, F.; Cornily, J. C.; Feig, J. E.; Gordon, R.; Vucic, E.; Amirbekian, V.; Fisher, E. A.; Fuster, V.; Feldman, L. J.; Fayad, Z. A. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat. Med. 2007, 13, 636–641.

    Article  Google Scholar 

  209. Luo, T.; Huang, P.; Gao, G.; Shen, G. X.; Fu, S.; Cui, D. X.; Zhou, C. Q.; Ren, Q. S. Mesoporous silica-coated gold nanorods with embedded indocyanine green for dual mode X-ray CT and NIR fluorescence imaging. Opt. Express 2011, 19, 17030–17039.

    Article  Google Scholar 

  210. Alric, C.; Taleb, J.; Le Duc, G.; Mandon, C.; Billotey, C.; Le Meur-Herland, A.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 5908–5915.

    Article  Google Scholar 

  211. Park, J. A.; Kim, H. K.; Kim, J. H.; Jeong, S. W.; Jung, J. C.; Lee, G. H.; Lee, J.; Chang, Y. M.; Kim, T. J. Gold nanoparticles functionalized by gadolinium-DTPA conjugate of cysteine as a multimodal bioimaging agent. Bioorg. Med. Chem. Lett. 2010, 20, 2287–2291.

    Article  Google Scholar 

  212. Wang, G. N.; Gao, W.; Zhang, X. J.; Mei, X. F. Au nanocage functionalized with ultra-small Fe3O4 nanoparticles for targeting T1-T2 dual MRI and CT imaging of tumor. Sci. Rep. 2016, 6, 28258.

    Article  Google Scholar 

  213. Ahn, S.; Jung, S. Y.; Seo, E.; Lee, S. J. Gold nanoparticleincorporated human red blood cells (RBCs) for X-ray dynamic imaging. Biomaterials 2011, 32, 7191–7199.

    Article  Google Scholar 

  214. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Article  Google Scholar 

  215. So, M. K.; Xu, C. J.; Leoning, A. M.; Gambhir, S. S.; Rao, J. H. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 2006, 24, 339–343.

    Article  Google Scholar 

  216. Hoffman, R. M. Recent advances on in vivo imaging with fluorescent proteins. Methods Cell Biol. 2008, 85, 485–495.

    Article  Google Scholar 

  217. Zhang, Z. R.; Berezin, M. Y.; Kao, J. L. F.; d’Avignon, A.; Bai, M. F.; Achilefu, S. Near-infrared dichromic fluorescent carbocyanine molecules. Angew. Chem., Int. Ed. 2008, 47, 3584–3587.

    Article  Google Scholar 

  218. Sun, G. R.; Berezin, M. Y.; Fan, J. D.; Lee, H.; Ma, J., Zhang, K., Wooley, K. L., Achilefu, S. Bright fluorescent nanoparticles for developing potential optical imaging contrast agents. Nanoscale 2010, 2, 548–558.

    Article  Google Scholar 

  219. Indocyanine Green for Injection [Online]. http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/011525s017lbl.pdf (accessed Aug 2, 2016).

  220. Griffiths, M.; Chae, M. P.; Rozen, W. M. Indocyanine green-based fluorescent angiography in breast reconstruction. Gland Surg. 2016, 5, 133–149.

    Google Scholar 

  221. Gurtner, G. C.; Jones, G. E.; Neligan, P. C.; Newman, M. I.; Phillips, B. T.; Sacks, J. M.; Zenn, M. R. Intraoperative laser angiography using the SPY system: Review of the literature and recommendations for use. Ann. Surg. Innov. Res. 2013, 7, 1.

    Article  Google Scholar 

  222. Maarek, J. M.; Holschneider, D. P.; Rubinstein, E. H. Fluorescence dilution technique for measurement of cardiac output and circulating blood volume in healthy human subjects. Anesthesiology 2007, 106, 491–498.

    Article  Google Scholar 

  223. Rosenthal, E. L.; Warram, J. M.; Bland, K. I.; Zinn, K. R. The status of contemporary image-guided modalities in oncologic surgery. Ann. Surg. 2015, 261, 46–55.

    Article  Google Scholar 

  224. Schaafsma, B. E.; Mieog, J. S.; Hutteman, M.; van der Vorst, J. R.; Kuppen, P. J. K.; Löwik, C. W. G. M.; Frangioni, J. V.; van de Velde, C. J. H.; Vahrmeijer, A. L. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J. Surg. Oncol. 2011, 104, 323–332.

    Article  Google Scholar 

  225. Raabe, A.; Nakaji, P.; Beck, J.; Kim, L. J.; Hsu, F. P. K.; Kamerman, J. D.; Seifert, V.; Spetzler, R. F. Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J. Neurosurg. 2005, 103, 982–989.

    Article  Google Scholar 

  226. Balamurugan, S.; Agrawal, A.; Kato, Y.; Sano, H. Intra operative indocyanine green video-angiography in cerebrovascular surgery: An overview with review of literature. Asian J. Neurosurg. 2011, 6, 88–93.

    Article  Google Scholar 

  227. Almutairi, A.; Akers, W. J.; Berezin, M. Y.; Achilefu, S.; Fréchet, J. M. J. Monitoring the biodegradation of dendritic near-infrared nanoprobes by in vivo fluorescence imaging. Mol. Pharm. 2008, 5, 1103–1110.

    Article  Google Scholar 

  228. Quan, B.; Choi, K.; Kim, Y. H.; Kang, K. W.; Chung, D. S. Near infrared dye indocyanine green doped silica nanoparticles for biological imaging. Talanta 2012, 99, 387–393.

    Article  Google Scholar 

  229. Soto, C. M.; Blum, A. S.; Vora, G. J.; Lebedev, N.; Meador, C. E.; Won, A. P.; Chatterji, A.; Johnson, J. E.; Ratna, B. R. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J. Am. Chem. Soc. 2006, 128, 5184–5189.

    Article  Google Scholar 

  230. Jung, B. S.; Rao, A. L. N.; Anvari, B. Optical nanoconstructs composed of genome-depleted brome mosaic virus doped with a near infrared chromophore for potential biomedical applications. ACS Nano 2011, 5, 1243–1252.

    Article  Google Scholar 

  231. Bahmani, B.; Lytle, C. Y.; Walker, A. M.; Gupta, S.; Vullev, V. I.; Anvari, B. Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: Quantitative fluorescence imaging and analysis of organs. Int. J. Nanomedicine 2013, 8, 1609–1620.

    Google Scholar 

  232. Yaseen, M. A.; Yu, J.; Wong, M. S.; Anvari, B. In-vivo fluorescence imaging of mammalian organs using chargeassembled mesocapsule constructs containing indocyanine green. Opt. Express 2008, 16, 20577–20587.

    Article  Google Scholar 

  233. Bahmani, B.; Bacon, D.; Anvari, B. Erythrocyte-derived photo-theranostic agents: Hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications. Sci. Rep. 2013, 3, 2180.

    Article  Google Scholar 

  234. Flower, R.; Peiretti, E.; Magnani, M.; Rossi, L.; Serafini, S.; Gryczynski, Z.; Gryczynski, I. Observation of erythrocyte dynamics in the retinal capillaries and choriocapillaris using ICG-loaded erythrocyte ghost cells. Invest. Ophthalmol. Vis. Sci. 2008, 49, 5510–5516.

    Article  Google Scholar 

  235. Magnani, M.; Rossi, L.; Brandi, G.; Schiavano, G. F.; Montroni, M.; Piedimonte, G. Targeting antiretroviral nucleoside analogues in phosphorylated form to macrophages: In vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 1992, 89, 6477–6481.

    Article  Google Scholar 

  236. Caminiti, G.; Carta, S. M.; Flower, R.; Rossi, L.; Magnani, M.; Fossarello, M.; Peiretti, E. Use of ICG-loaded erythrocytes for choroidal angiography in human, pilot study. Invest. Ophthalmol. Vis. Sci. 2015, 56, 3362.

    Google Scholar 

  237. Paefgen, V.; Doleschel, D.; Kiessling, F. Evolution of contrast agents for ultrasound imaging and ultrasoundmediated drug delivery. Front. Pharmacol. 2015, 6, 197.

    Article  Google Scholar 

  238. Aoki, S.; Hattori, R.; Yamamoto, T.; Funahashi, Y.; Matsukawa, Y.; Gotoh, M.; Yamada, Y.; Honda, N. Contrastenhanced ultrasound using a time-intensity curve for the diagnosis of renal cell carcinoma. BJU Int. 2011, 108, 349–354.

    Article  Google Scholar 

  239. Masuzaki, R.; Shiina, S.; Tateishi, R.; Yoshida, H.; Goto, E.; Sugioka, Y.; Kondo, Y.; Goto, T.; Ikeda, H.; Omata, M. et al. Utility of contrast-enhanced ultrasonography with Sonazoid in radiofrequency ablation for hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2011, 26, 759–764.

    Article  Google Scholar 

  240. Molina, C. A.; Ribo, M.; Rubiera, M.; Montaner, J.; Santamarina, E.; Delgado-Mederos, R.; Arenillas, J. F.; Huertas, R.; Purroy, F.; Delgado, P. et al. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006, 37, 425–429.

    Article  Google Scholar 

  241. Dixon, A. J.; Kilroy, J. P.; Dhanaliwala, A. H.; Chen, J. L.; Phillips, L. C.; Ragosta, M.; Klibanov, A. L.; Wamhoff, B. R.; Hossack, J. A. Microbubble-mediated intravascular ultrasound imaging and drug delivery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 1674–1685.

    Google Scholar 

  242. Dhanaliwala, A. H.; Dixon, A. J.; Lin, D.; Chen, J. L.; Klibanov, A. L.; Hossack, J. A. In vivo imaging of microfluidic-produced microbubbles. Biomed. Microdevices 2015, 17, 23.

    Article  Google Scholar 

  243. Chen, J. L.; Dhanaliwala, A. H.; Dixon, A. J.; Farry, J. M.; Hossack, J. A.; Klibanov, A. L. Acoustically active red blood cell carriers for ultrasound-triggered drug delivery with photoacoustic tracking. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, China, 2015, pp 1–4.

    Google Scholar 

  244. Dhanaliwala, A. H.; Klibanov, A. L.; Hossack J. A. Red blood cells as an ultrasound contrast agent [Online]. http://www.vsgc.odu.edu/awardees/20122013/abstracts/Papers%20-%20Grad/Dhanaliwala,%20Ali%20-%20Paper. pdf. (accessed Aug 2, 2016).

    Google Scholar 

  245. Bayer, C. L.; Luke, G. P.; Emelianov, S. Y. Photoacoustic imaging for medical diagnostics. Acoust. Today 2012, 8, 15–23.

    Article  Google Scholar 

  246. Oladipupo, S. S.; Hu, S.; Santeford, A. C.; Yao, J. J.; Kovalski, J. R.; Shohet, R. V.; Maslov, K.; Wang, L. V.; Arbeit, J. M. Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence. Blood 2011, 117, 4142–4153.

    Article  Google Scholar 

  247. Oladipupo, S.; Hu, S.; Kovalski, J.; Yao, J. J.; Santeford, A.; Sohn, R. E.; Shohet, R.; Maslov, K.; Wang, L. V.; Arbeit, J. M. VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting. Proc. Natl. Acad. Sci. USA 2011, 108, 13264–13269.

    Article  Google Scholar 

  248. Yao, J. J.; Wang, L. V. Sensitivity of photoacoustic microscopy. Photoacoustics 2014, 2, 87–101.

    Article  Google Scholar 

  249. Liu, J.; Geng, J. L.; Liao, L. D.; Thakor, N.; Gao, X. H.; Liu, B. Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym. Chem. 2014, 5, 2854–2862.

    Article  Google Scholar 

  250. Jin, Y. D.; Jia, C. X.; Huang, S. W.; O’Donnell, M.; Gao, X. H. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 2010, 1, 41.

    Article  Google Scholar 

  251. Zhang, H. F.; Maslov, K.; Stoica, G.; Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851.

    Article  Google Scholar 

  252. Weber, J.; Beard, P. C.; Bohndiek, S. E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650.

    Article  Google Scholar 

  253. Wang, X. D.; Xie, X. Y.; Ku, G.; Wang, L. V.; Stoica, G. Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 2006, 11, 024015.

    Article  Google Scholar 

  254. Xu, M. H.; Wang, L. V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101.

    Article  Google Scholar 

  255. De la Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. J.; Oralkan, O. et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562.

    Article  Google Scholar 

  256. Luke, G. P.; Yeager, D.; Emelianov, S. Y. Biomedical applications of photoacoustic imaging with exogenous contrast agents. Ann. Biomed. Eng. 2012, 40, 422–437.

    Article  Google Scholar 

  257. Kim, G.; Huang, S. W.; Day, K. C.; O’Donnell, M.; Agayan, R. R.; Day, M. A.; Kopelman, R.; Ashkenazi, S. Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. J. Biomed. Opt. 2007, 12, 044020.

    Article  Google Scholar 

  258. Mehrmohammadi, M.; Yoon, S. J.; Yeager, D.; Emelianov, S. Y. Photoacoustic imaging for cancer detection and staging. Curr. Mol. Imaging 2013, 2, 89–105.

    Article  Google Scholar 

  259. Wilson, K. E.; Wang, T. Y.; Willmann, J. K. Acoustic and photoacoustic molecular imaging of cancer. J. Nucl. Med. 2013, 54, 1851–1854.

    Article  Google Scholar 

  260. Petrova, E. V.; Oraevsky, A. A.; Ermilov, S. A. Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring. Appl. Phys. Lett. 2014, 105, 094103.

    Article  Google Scholar 

  261. Hysi, E.; Saha, R. K.; Kolios, M. C. On the use of photoacoustics to detect red blood cell aggregation. Biomed. Opt. Express 2012, 3, 2326–2338.

    Article  Google Scholar 

  262. Baskurt, O. K.; Hardeman, M. R.; Rampling, M. W.; Meiselman, H. J. Handbook of Hemorheology and Hemodynamics; IOS Press: Amsterdam, 2007.

    Google Scholar 

  263. Wang, X. D.; Pang, Y. J.; Ku, G.; Xie, X. Y.; Stoica, G.; Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806.

    Article  Google Scholar 

  264. Hu, S.; Rao, B.; Maslov, K.; Wang, L. V. Label-free photoacoustic ophthalmic angiography. Opt. Lett. 2010, 35, 1–3.

    Article  Google Scholar 

  265. Samant, P.; Chen, J.; Xiang L. Z. Characterization of the temperature rise in a single cell during photoacoustic tomography at the nanoscale. J. Biomed. Opt. 2016, 21, 075009.

    Article  Google Scholar 

  266. Chessa, L.; Leuzzi, V.; Plebani, A.; Soresina, A.; Micheli, R.; D’Agnano, D.; Venturi, T.; Molinaro, A.; Fazzi, E.; Marini, M. et al. Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia teleangiectasia patients: Results of a phase 2 trial. Orphanet J. Rare Dis. 2014, 9, 5.

    Article  Google Scholar 

  267. Leuzzi, V.; Micheli, R.; D’Agnano, D.; Molinaro, A.; Venturi, T.; Plebani, A.; Soresina, A.; Marini, M.; Ferremi Leali, P; Quinti, I. et al. Positive effect of erythrocytedelivered dexamethasone in ataxia-telangiectasia. Neurol. Neuroimmunol. Neuroinflamm. 2015, 2, e98.

    Article  Google Scholar 

  268. Bourgeaux, V.; Lanao, J. M.; Bax, B. E.; Godfrin, Y. Drug-loaded erythrocytes: On the road toward marketing approval. Drug Des. Devel. Ther. 2016, 10, 665–676.

    Article  Google Scholar 

  269. Antonelli, A.; Magnani, M. Red blood cells as carriers of iron oxide-based contrast agents for diagnostic applications. J. Biomed. Nanotechnol. 2014, 10, 1732–1750.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Antonelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonelli, A., Sfara, C. & Magnani, M. Intravascular contrast agents in diagnostic applications: Use of red blood cells to improve the lifespan and efficacy of blood pool contrast agents. Nano Res. 10, 731–766 (2017). https://doi.org/10.1007/s12274-016-1342-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1342-0

Keywords

Navigation