Skip to main content
Log in

Beyond ultrasound: advances in multimodality cardiac imaging

  • IM - REVIEW
  • Published:
Internal and Emergency Medicine Aims and scope Submit manuscript

Abstract

The rapid technological evolution accomplished in noninvasive cardiac imaging techniques over the past few decades has provided physicians with a large armamentarium for the evaluation of patients with known or suspected coronary heart disease. Noninvasive assessment of coronary artery calcium or noninvasive coronary angiography may be performed using computed tomography or magnetic resonance imaging. These techniques evaluate the presence of atherosclerosis rather than ischemia. Conversely, nuclear cardiology is the most widely used noninvasive approach for the assessment of myocardial perfusion and function. These techniques coupled with the development of dedicated image fusion software packages to merge data sets from different modalities have paved the way for hybrid imaging. This article provides a description of the available noninvasive imaging techniques in the assessment of coronary anatomy, myocardial perfusion, and cardiac function in patients with known or suspected coronary heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Global status reports on noncommunicable diseases 2010. Available at: http://www.who.int/nmh/publications/ncd_report2010/en/

  2. Petretta M, Costanzo P, Acampa W et al (2008) Noninvasive assessment of coronary anatomy and myocardial perfusion: going toward an integrated imaging approach. J Cardiovasc Med (Hagerstown) 9:977–986

    Article  Google Scholar 

  3. Budoff MJ, Diamond GA, Raggi P et al (2002) Continuous probabilistic prediction of angiographically significant coronary artery disease using electron beam tomography. Circulation 105:1791–1796

    Article  PubMed  Google Scholar 

  4. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  5. Rumberger JA, Simons DB, Fitzpatrick LA et al (1995) Coronary artery calcium area by electron-beam computed tomography with intracoronary ultrasound and coronary atherosclerotic plaque area: a hystopathologic correlative study. Circulation 92:2157–2162

    Article  CAS  PubMed  Google Scholar 

  6. Sangiorgi G, Rumberger JA, Severson A et al (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31:126–133

    Article  CAS  PubMed  Google Scholar 

  7. Eisentopf J, Achenbach S, Ulzheimer S et al (2013) Low-dose dual-source CT angiography with iterative reconstruction for coronary artery stent evaluation. JACC Cardiovasc Imaging 6:458–465

    Article  PubMed  Google Scholar 

  8. Glagov S, Weisenberg E, Zarins CK et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    Article  CAS  PubMed  Google Scholar 

  9. Haberl R, Becker A, Leber A et al (2001) Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1,764 patients. J Am Coll Cardiol 37:451–457

    Article  CAS  PubMed  Google Scholar 

  10. Petretta M, Daniele S, Acampa W et al (2012) Prognostic value of coronary artery calcium score and coronary CT angiography in patients with intermediate risk of coronary artery disease. Int J Cardiovasc Imaging 28:1547–1556

    Article  PubMed  Google Scholar 

  11. Budoff MJ, Achenbach S, Blumenthal RS et al (2006) Assessment of coronary artery disease by cardiac computed tomography. a scientific statement from the american heart association committee on cardiovascular imaging and intervention, council on cardiovascular radiology and intervention, and committee on cardiac imaging council on clinical cardiology. Circulation 114:1761–1791

    Article  PubMed  Google Scholar 

  12. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol 52:1724–1732

    Article  PubMed  Google Scholar 

  13. CATSCAN Study Investigators, Garcia MJ, Lessick J, Hoffmann MH (2006) Accuracy of 16-row multidetector computed tomography for the assessment of coronary artery stenosis. JAMA 296:403–411

    Article  CAS  PubMed  Google Scholar 

  14. Leber AW, Knez A, von Ziegler F et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  15. Achenbach S, Moselewski F, Ropers D et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation 109:14–17

    Article  PubMed  Google Scholar 

  16. Stuber M, Weiss RG (2007) Coronary magnetic resonance angiography. J Magn Reson Imaging 26:219–234

    Article  PubMed  Google Scholar 

  17. Gharib AM, Ho VB, Rosing DR et al (2008) Coronary artery anomalies and variants: technical feasibility of assessment with coronary MRI angiography at 3 T. Radiology 247:220–227

    Article  PubMed  Google Scholar 

  18. Sakuma H, Ichikawa Y, Chino S, Tadanori Hirano T, Makino K, Takeda K (2006) Detection of coronary artery stenosis with whole heart coronary magnetic resonance angiography. J Am Coll Cardiol 48:1946–1950

    Article  PubMed  Google Scholar 

  19. Sommer T, Hackenbroch M, Hofer U et al (2005) Coronary MR angiography at 3 Tesla versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234:718–725

    Article  PubMed  Google Scholar 

  20. Schuijf JD, Bax JJ, Shaw LJ et al (2006) Meta-analysis of comparative diagnostic performance of magnetic resonance imaging and multi-slice computed tomography for noninvasive coronary angiography. Am Heart J 151:404–411

    Article  PubMed  Google Scholar 

  21. Cuocolo A, Petretta M, Acampa W, De Falco T (2010) Gated SPECT myocardial perfusion imaging: the further improvements of an excellent tool. Q J Nucl Med Mol Imaging 54:129–144

    CAS  PubMed  Google Scholar 

  22. Petretta M, Acampa W, Daniele S, Petretta MP, Plaitano M, Cuocolo A (2013) Transient ischemic dilatation in patients with diabetes mellitus: prognostic value and effect on clinical outcome after coronary revascularization. Circ Cardiovasc Imaging 6:908–915

    Article  PubMed  Google Scholar 

  23. Petretta M, Acampa W, Fiumara G, Cuocolo A (2013) Cardiovascular risk stratification in diabetic patients. Clin Transl Imaging 1:325–339

    Article  Google Scholar 

  24. Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM (2002) The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 9:135–143

    Article  PubMed  Google Scholar 

  25. Slomka PJ, Patton JA, Berman DS, Germano G (2009) Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 16:255–276

    Article  PubMed  Google Scholar 

  26. Garcia EV, Faber TL (2009) New trends in camera and software technology in nuclear cardiology. Cardiol Clin 27:227–236

    Article  PubMed  Google Scholar 

  27. Gimelli A, Liga R (2013) Clinical applications of multimodality cardiac imaging. Clin Transl Imaging 1:297–304

    Article  Google Scholar 

  28. Yamamoto Y, de Silva R, Rhodes CG et al (1992) A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation 86:167–178

    Article  CAS  PubMed  Google Scholar 

  29. Parker MW, Iskandar A, Limone B et al (2012) Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging 5:700–707

    Article  PubMed  Google Scholar 

  30. Klocke FJ, Baird MG, Lorell BH et al (2003) ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging–executive summary: a report of the american college of cardiology/american heart association task force on practice guidelines (ACC/AHA/ASNC committee to revise the 1995 guidelines for the clinical use of cardiac radionuclide imaging). J Am Coll Cardiol 42:1318–1333

    Article  PubMed  Google Scholar 

  31. Patel MR, Peterson ED, Dai D et al (2010) Low diagnostic yield of elective coronary angiography. N Engl J Med 362:886–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Koller A, Balasko M, Bagi Z (2013) Endothelial regulation of coronary microcirculation in health and cardiometabolic diseases. Intern Emerg Med 8(Suppl 1):S51–S54

    Article  PubMed Central  PubMed  Google Scholar 

  33. Camici PG, Rimoldi OE (2013) Coronary microvascular dysfunction and flow reserve: an update. Clin Transl Imaging 1:315–323

    Article  Google Scholar 

  34. Sherif HM, Saraste A, Weidl E et al (2009) Evaluation of a novel (18)F-labeled positron-emission tomography perfusion tracer for the assessment of myocardial infarct size in rats. Circ Cardiovasc Imaging 2:77–84

    Article  PubMed  Google Scholar 

  35. Berman DS, Maddahi J, Tamarappoo BK et al (2013) Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol 61:469–477

    Article  CAS  PubMed  Google Scholar 

  36. Schwitter J, Wacker CM, van Rossum AC et al (2008) MRI-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29:480–489

    Article  PubMed  Google Scholar 

  37. Cheng AS, Pegg TJ, Karamitsos TD et al (2007) Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5 tesla. J Am Coll Cardiol 49:2440–2449

    Article  PubMed  Google Scholar 

  38. Cernuschi G, Cringoli M (2012) Is magnetic resonance safe in implanted cardiac devices patients? Intern Emerg Med 7:281–282

    Article  PubMed  Google Scholar 

  39. Petretta M, Petretta A, Pellegrino T, Nappi C, Cantoni V, Cuocolo A (2014) Role of nuclear cardiology for guiding device therapy in patients with heart failure. World J Meta-Anal 2:1–16

    Article  Google Scholar 

  40. Cleland JG, Calvert MJ, Verboven Y, Freemantle N (2009) Effects of cardiac resynchronization therapy on long-term quality of life: an analysis from the cardiac resynchronisation-heart failure (CARE-HF) study. Am Heart J 157:457–466

    Article  PubMed  Google Scholar 

  41. Chung ES, Leon AR, Tavazzi L et al (2008) Results of the predictors of response to CRT (PROSPECT) trial. Circulation 117:2608–2616

    Article  PubMed  Google Scholar 

  42. Van Kriekinge SD, Germano G (2013) Imaging cardiac dyssynchrony. Clin Transl Imaging 1:353–361

    Article  Google Scholar 

  43. Boogers MM, Van Kriekinge SD, Henneman MM et al (2009) Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. J Nucl Med 50:718–725

    Article  PubMed  Google Scholar 

  44. Delgado V, Bax JJ (2011) Assessment of systolic dyssynchrony for cardiac resynchronization therapy is clinically useful. Circulation 123:640–655

    Article  PubMed  Google Scholar 

  45. Tamaki N, Kuge Y, Yoshinaga K (2013) Molecular imaging in heart failure patients. Clin Transl Imaging 1:341–351

    Article  PubMed Central  PubMed  Google Scholar 

  46. Pellegrino T, Petretta M, De Luca S et al (2013) Observer reproducibility of results from a low-dose 123I-metaiodobenzylguanidine cardiac imaging protocol in patients with heart failure. Eur J Nucl Med Mol Imaging 40:1549–1557

    Article  CAS  PubMed  Google Scholar 

  47. Paolillo S, Rengo G, Pagano G et al (2013) Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 123I meta-iodobenzylguanidine (123I MIBG) scintigraphic study. Diabetes Care 36:2395–2401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. De Rosa A, Pappatà S, Pellegrino T et al (2013) Reduced cardiac 123I-metaiodobenzylguanidine uptake in patients with spinocerebellar ataxia type 2: a comparative study with Parkinson’s disease. Eur J Nucl Med Mol Imaging 40:1914–1921

    Article  PubMed  Google Scholar 

  49. Kaye MP, Tyce GM (1978) Norepinephrine uptake as an indicator of cardiac reinnervation in dogs. Am J Physiol 235:H289–H294

    CAS  PubMed  Google Scholar 

  50. Nakata T, Nakajima K, Yamashina S et al (2013) A pooled analysis of multicenter cohort studies of (123)I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging 6:772–784

    Article  PubMed  Google Scholar 

  51. Schofer J, Spielmann R, Schuchert A, Weber K, Schlüter M (1988) Iodine-123 meta-iodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 12:1252–1258

    Article  CAS  PubMed  Google Scholar 

  52. Podrid PJ, Fuchs T, Candinas R (1990) Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation 82(2 Suppl):I103–I113

    CAS  PubMed  Google Scholar 

  53. Bischof Delaloye A, Carrió I, Cuocolo A et al (2007) White paper of the European Association of Nuclear Medicine (EANM) and the European Society of Radiology (ESR) on multimodality imaging. Eur J Nucl Med Mol Imaging 34:1147–1151

    Article  PubMed  Google Scholar 

  54. Ratib O (2013) PET/MRI: a new era in multimodality molecular imaging. Clin Transl Imaging 1:5–10

    Article  Google Scholar 

  55. Picano E, Vañó E, Rehani MM et al (2014) The appropriate and justified use of medical radiation in cardiovascular imaging: a position document of the ESC associations of cardiovascular imaging, percutaneous cardiovascular interventions and electrophysiology. Eur Heart J 35:665–672

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cuocolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nappi, C., Acampa, W., Pellegrino, T. et al. Beyond ultrasound: advances in multimodality cardiac imaging. Intern Emerg Med 10, 9–20 (2015). https://doi.org/10.1007/s11739-014-1106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11739-014-1106-3

Keywords

Navigation