Skip to main content

Magnetotactic Bacteria

  • Reference work entry
The Prokaryotes

Abstract

Prokaryotes that exhibit magnetotaxis, collectively known as the magnetotactic bacteria, are those whose direction of motility is influenced by the Earth’s geomagnetic and externally applied magnetic fields. These ubiquitous, aquatic microorganisms represent a morphologically, phylogenetically, and physiologically diverse group that biomineralize unique organelles called magnetosomes that are responsible for the cells’ magnetotactic behavior. Magnetosomes consist of magnetic mineral crystals, either magnetite (Fe3O4) or greigite (Fe3S4), each enveloped by a phospholipid bilayer membrane that contains proteins not present in other membranes. While there are several different magnetite and greigite crystal morphologies, mature crystals of both minerals are always in the single magnetic domain size range, about 35–120 nm, thus having the highest possible magnetic moment per unit volume. In most magnetotactic bacteria, magnetosomes are arranged as a chain within the cell thereby maximizing the magnetic dipole moment of the cell causing the cell to passively align along magnetic field lines as it swims. Magnetotaxis is thought to function in conjunction with chemotaxis in aiding magnetotactic bacteria in locating and maintaining an optimal position in vertical chemical concentration gradients common in stationary aquatic habitats, by reducing a three-dimensional search problem to one of a single dimension.

Although the detection of magnetotactic bacteria in samples collected from natural environments is relatively easy, the magnetotactic bacteria are a fastidious group of prokaryotes and special culture conditions are necessary for their isolation and cultivation. Phylogenetically, most known cultured and uncultured magnetotactic bacteria are associated with the Alpha-, Gamma-, and Deltaproteobacteria classes of the Proteobacteria phylum and the Nitrospirae phylum. All cultured species are either microaerophiles or anaerobes or both. Most cultured species of the Alpha- and Gammaproteobacteria classes are microaerophiles that grow chemolithoautotrophically using reduced sulfur compounds as electron sources and the Calvin-Benson-Bassham cycle or the reverse tricarboxylic acid cycle for autotrophy and chemoorganoheterotrophically using organic acids as electron and carbon sources. Those in the Deltaproteobacteria are sulfate-reducing anaerobes that only grow chemoorganoheterotrophically. Almost all cultured species exhibit nitrogenase activity and thus fix atmospheric nitrogen and many denitrify. Magnetotactic bacteria thus show a great potential for iron, nitrogen, sulfur, and carbon cycling in natural environments.

Genetic determinants for magnetosome synthesis, the mam and mms genes, are organized as clusters in the genomes of all magnetotactic bacteria examined. These clusters are in close proximity to each other within the genomes and are surrounded by genomic features that suggest that magnetosome genes are organized as a magnetosome gene island that might be transmitted to many different bacteria through horizontal gene transfer. Through the development of genetic systems in some magnetotactic bacteria, the functions of several magnetosome membrane proteins in the biomineralization of the magnetite magnetosome chain have been demonstrated although the roles of most remain unknown.

Bacterial magnetosomes have novel physical and magnetic properties and also geological significance and have been used in a large number of commercial and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrajevitch A, Kodama K (2011) Diagenetic sensitivity of paleoenvironmental proxies: a rock magnetic study of Australian continental margin sediments. Geochem Geophys Geosyst 12:Q05Z24

    Article  CAS  Google Scholar 

  • Abreu F, Silva KT, Martins JL, Lins U (2006) Cell viability in multicellular magnetotactic prokaryotes. Int Microbiol 9:267–271

    PubMed  CAS  Google Scholar 

  • Abreu F, Martins JL, Silveira TS, Keim CN, Lins de Barros HGP, Filho FJG, Lins U (2007) “Candidatus magnetoglobus multicellularis”, a multicellular, magnetotactic prokaryote from a hypersaline environment. Int J Syst Evol Microbiol 57:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Abreu F, Cantão ME, Nicolás MF, Barcellos FG, Morillo V, Almeida LG, Do Nascimento FF, Lefèvre CT, Bazylinski DA, de Vasconcelos ATR, Lins U (2011) Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria. ISME J 5:1634–1640

    Article  PubMed  CAS  Google Scholar 

  • Alphandéry E, Faure S, Raison L, Duguet E, Howse PA, Bazylinski DA (2011) Heat production by bacterial magnetosomes exposed to an oscillating magnetic field. J Phys Chem C 115:18–22

    Article  CAS  Google Scholar 

  • Alphandery E, Faure S, Seksek O, Guyot F, Chebbi I (2011) Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 5:6279–6296

    Article  PubMed  CAS  Google Scholar 

  • Amann R, Peplies J, Schüler D (2007) Diversity and taxonomy of magnetotactic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Berlin, pp 25–36

    Chapter  Google Scholar 

  • Amemiya Y, Tanaka T, Yoza B, Matsunaga T (2005) Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol 120:308–314

    Article  PubMed  CAS  Google Scholar 

  • Arakaki A, Takeyama H, Tanaka T, Matsunaga T (2002) Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1, using magnetic separation. Appl Biochem Biotechnol 98–100:833–840

    Article  PubMed  Google Scholar 

  • Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750

    Article  PubMed  CAS  Google Scholar 

  • Arakaki A, Hideshima S, Nakagawa T, Niwa D, Tanaka T, Matsunaga T, Osaka T (2004) Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles. Biotechnol Bioeng 88:543–546

    Article  PubMed  CAS  Google Scholar 

  • Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T (2008) Formation of magnetite by bacteria and its application. J R Soc Interface 5:977–999

    Article  PubMed  CAS  Google Scholar 

  • Arató B, Szányi Z, Flies C, Schüler D, Frankel RB, Buseck PR, Pósfai M (2005) Crystal-size and shape distributions of magnetite from uncultured magnetotactic bacteria as a potential biomarker. Am Mineral 90:1233–1240

    Article  CAS  Google Scholar 

  • Baeuerlein E (2003) Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int Ed Engl 42:614–641

    Article  Google Scholar 

  • Bahaj AS, James PAB, Ellwood DC, Watson JHP (1993) Characterization and growth of magnetotactic bacteria-implications of clean up of environmental pollution. J Appl Physiol 73:5394–5396

    Article  CAS  Google Scholar 

  • Bahaj AS, James PAB, Moeschler FD (1998a) Low magnetic-field separation system for metal-loaded magnetotactic bacteria. J Magn Magn Mater 177:1453–1454

    Article  Google Scholar 

  • Bahaj AS, Croudace IW, James PAB, Moeschler FD, Warwick PE (1998b) Continuous radionuclide recovery from wastewater using magnetotactic bacteria. J Magn Magn Mater 184:241–244

    Article  CAS  Google Scholar 

  • Bahaj AS, James PAB, Moeschler FD (1998c) Wastewater treatment by biomagnetic separation: a comparison of iron oxide and iron sulphide biomass recovery. Water Sci Technol 38:311–317

    CAS  Google Scholar 

  • Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetic spirillum. J Bacteriol 141:1399–1408

    PubMed  CAS  Google Scholar 

  • Bazylinski DA (1995) Structure and function of the bacterial magnetosome. ASM News 61:337–343

    Google Scholar 

  • Bazylinski DA, Blakemore RP (1983a) Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appl Environ Microbiol 46:1118–1124

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Blakemore RP (1983b) Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum. Curr Microbiol 9:305–308

    Article  CAS  Google Scholar 

  • Bazylinski DA, Frankel RB (1992) Production of iron sulfide minerals by magnetotactic bacteria from sulfidic environments. In: Skinner HCW, Fitzpatrick RW (eds) Biomineralization processes of iron and manganese: modern and ancient environments. Catena-Verlag, Cremlingen-Destedt, pp 147–159

    Google Scholar 

  • Bazylinski DA, Frankel RB (2000) Magnetic iron oxide and iron sulfide minerals within microorganisms. In: Bäuerlein E (ed) Biomineralization: from biology to biotechnology and medical application. Wiley-VCH, Weinheim, pp 25–46

    Google Scholar 

  • Bazylinski DA, Frankel RB (2003) Biologically controlled mineralization in prokaryotes. Rev Mineral Geochem 54:95–114

    Article  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    Article  PubMed  CAS  Google Scholar 

  • Bazylinski DA, Moskowitz BM (1997) Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance. Rev Mineral 35:181–223

    CAS  Google Scholar 

  • Bazylinski DA, Schübbe S (2007) Controlled biomineralization by and applications of magnetotactic bacteria. Adv Appl Microbiol 62:21–62

    Article  PubMed  CAS  Google Scholar 

  • Bazylinski DA, Williams TJ (2007) Ecophysiology of magnetotactic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Berlin, pp 37–75

    Chapter  Google Scholar 

  • Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic production of magnetite by a marine magnetotactic bacterium. Nature 334:518–519

    Article  Google Scholar 

  • Bazylinski DA, Frankel RB, Garratt-Reed AJ, Mann S (1990) Biomineralization of iron-sulfides in magnetotactic bacteria from sulfidic environments. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum, New York, pp 239–255

    Google Scholar 

  • Bazylinski DA, Garratt-Reed AJ, Abedi A, Frankel RB (1993a) Copper association with iron sulfide magnetosomes in a magnetotactic bacterium. Arch Microbiol 160:35–42

    CAS  Google Scholar 

  • Bazylinski DA, Heywood BR, Mann S, Frankel RB (1993b) Fe3O4 and Fe3S4 in a bacterium. Nature 366:218–219

    Article  Google Scholar 

  • Bazylinski DA, Garratt-Reed A, Frankel RB (1994) Electron-microscopic studies of magnetosomes in magnetotactic bacteria. Microscopy Res Tech 27:389–401

    Article  CAS  Google Scholar 

  • Bazylinski DA, Frankel RB, Heywood BR, Mann S, King JW, Donaghay PL, Hanson AK (1995) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl Environ Microbiol 61:3232–3239

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Dean AJ, Schüler D, Phillips EJP, Lovley DR (2000) N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2:266–273

    Article  PubMed  CAS  Google Scholar 

  • Bazylinski DA, Dean AJ, Williams TJ, Kimble Long L, Middleton SL, Dubbels BL (2004) Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol 182:373–387

    Article  PubMed  CAS  Google Scholar 

  • Bazylinski DA, Williams TJ, Lefèvre CT, Berg RJ, Zhang CL, Bowser SS, Dean AJ, Beveridge TJ (2012a) Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov.; Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.038927-0

    Google Scholar 

  • Bazylinski DA, Williams TJ, Lefèvre CT, Trubitsyn D, Fang J, Beveridge TJ, Moskowitz BM, Ward B, Schübbe S, Dubbels BL, Simpson B (2012b) Magnetovibrio blakemorei, gen. nov. sp. nov., a new magnetotactic bacterium (Alphaproteobacteria: Rhodospirillaceae) isolated from a salt marsh. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.044453-0

    Google Scholar 

  • Bellini S (1963) On a unique behavior of freshwater bacteria. University of Pavia, Institute of Microbiology, Pavia

    Google Scholar 

  • Bellini S (2009a) On a unique behavior of freshwater bacteria. Chin J Oceanol Limnol 27:3–5

    Article  Google Scholar 

  • Bellini S (2009b) Further studies on “magnetosensitive bacteria”. Chin J Oceanol Limnol 27:6–12

    Article  Google Scholar 

  • Berner RA (1967) Thermodynamic stability of sedimentary iron sulfides. Am J Sci 265:773–785

    Article  CAS  Google Scholar 

  • Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23

    Article  CAS  Google Scholar 

  • Berner RA (1974) Iron sulfides in Pleistocene deep Black Sea sediments and their palaeooceanographic significance. In: Degens ET, and Ross DA (eds) The Black Sea: geology, chemistry and biology. AAPG Memoirs 20:American Association of Petroleum Geologists. Tulsa, OK, pp 524–531

    Google Scholar 

  • Bertani LE, Weko J, Phillips KV, Gray RF, Kirschvink JL (2001) Physical and genetic characterization of the genome of Magnetospirillum magnetotacticum, strain MS-1. Gene 264:257–263

    Article  PubMed  CAS  Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    Article  PubMed  CAS  Google Scholar 

  • Blakemore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217–238

    Article  PubMed  CAS  Google Scholar 

  • Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729

    PubMed  CAS  Google Scholar 

  • Blakemore RP, Frankel RB, Kalmijn AJ (1980) South-seeking magnetotactic bacteria in the southern-hemisphere. Nature 286:384–385

    Article  Google Scholar 

  • Blakemore RP, Short KA, Bazylinski DA, Rosenblatt C, Frankel RB (1985) Microaerobic conditions are required for magnetite synthesis within Aquaspirillum magnetotacticum. Geomicrobiol J 4:53–71

    Article  CAS  Google Scholar 

  • Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschäpe H, Hacker J (1994) Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62:606–614

    PubMed  CAS  Google Scholar 

  • Borchardt-Ott W (2011) Crystallography: an introduction, 3rd edn. Springer, Berlin/Heidelberg, 373

    Google Scholar 

  • Braatsch S, Moskvin OV, Klug G, Gomelsky M (2004) Responses of the Rhodobacter sphaeroides transcriptome to blue light under semiaerobic conditions. J Bacteriol 186:7726–7735

    Article  PubMed  CAS  Google Scholar 

  • Burgess JG, Kawaguchi R, Sakaguchi T, Thornhill RH, Matsunaga T (1993) Evolutionary relationships among Magnetospirillum strains inferred from phylogenetic analysis of 16S rDNA sequences. J Bacteriol 175:6689–6694

    PubMed  CAS  Google Scholar 

  • Buseck PR, Dunin-Borkowski RE, Devouard B, Frankel RB, McCartney MR, Midgley PA, Pósfai M, Weyland M (2001) Magnetite morphology and life on mars. Proc Natl Acad Sci USA 98:13490–13495

    Article  PubMed  CAS  Google Scholar 

  • Butler RF, Banerjee SK (1975) Theoretical single-domain grain size range in magnetite and titanomagnetite. J Geophys Res 80:4049–4058

    Article  CAS  Google Scholar 

  • Byrne ME, Ball DA, Guerquin-Kern JL, Rouiller I, Wu TD, Downing KH, Vali H, Komeili A (2010) Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc Natl Acad Sci USA 107:12263–12268

    Article  PubMed  CAS  Google Scholar 

  • Cabeen MT, Jacobs-Wagner C (2010) The bacterial cytoskeletan. Annu Rev Genet 44:365–392

    Article  PubMed  CAS  Google Scholar 

  • Calugay RJ, Miyashita H, Okamura Y, Matsunaga T (2003) Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol Lett 218:371–375

    Article  PubMed  CAS  Google Scholar 

  • Carballido-Lopez R (2006) The bacterial actin-like cytoskeleton. Microbiol Mol Biol Rev 70:888–909

    Article  PubMed  CAS  Google Scholar 

  • Chang S-BR, Kirschvink JL (1989) Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annu Rev Earth Planet Sci 17:169–195

    Article  CAS  Google Scholar 

  • Chang S-BR, Stolz JF, Kirschvink JL, Awramik SM (1989) Biogenic magnetite in stromatolites. 2: occurrence in ancient sedimentary environments. Precambrian Res 43:305–312

    Article  CAS  Google Scholar 

  • Chertok B, David AE, Huang Y, Yang VC (2007) Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics. J Control Release 122:315–323

    Article  PubMed  CAS  Google Scholar 

  • Ciofani G, Riggio C, Raffa V, Menciassi A, Cuschieri A (2009) A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med Hypotheses 73:80–82

    Article  PubMed  CAS  Google Scholar 

  • Clemett SJ, Thomas-Keprta KL, Shimmin J, Morphew M, McIntosh JR, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2002) Crystal morphology of MV-1 magnetite. Am Mineral 87:1727–1730

    CAS  Google Scholar 

  • Cox BL, Popa R, Bazylinski DA, Lanoil D, Douglas S, Belz A, Engler DL, Nealson KH (2002) Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci. Geomicrobiol J 19:387–406

    Article  CAS  Google Scholar 

  • de Graef MR, Alexeeva S, Snoep JL, De Mattos MJT (1999) The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181:2351–2357

    PubMed  Google Scholar 

  • Dean AJ, Bazylinski DA (1999) Genome analysis of several marine, magnetotactic bacterial strains by pulsed-field gel electrophoresis. Curr Microbiol 39:219–225

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF, Frankel RB, Bazylinski DA (1993) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259:803–806

    Article  PubMed  CAS  Google Scholar 

  • Demitrack A (1985) A search for bacterial magnetite in the sediments of Eel Pond, Woods Hole, Massachusetts. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum, New York, pp 625–645

    Chapter  Google Scholar 

  • Derman AI, Becker EC, Truong BD, Fujioka A, Tucey TM, Erb ML, Patterson PC, Pogliano J (2009) Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol Microbiol 73:534–552

    Article  PubMed  CAS  Google Scholar 

  • Devouard B, Pósfai M, Hua X, Bazylinski DA, Frankel RB, Buseck PR (1998) Magnetite from magnetotactic bacteria: size distribution and twining. Am Mineral 83:1387–1398

    CAS  Google Scholar 

  • Diaz-Ricci JC, Kirschvink JL (1992) Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): a comparison of theory with magnetosome observations. J Geophys Res 97(B12):17309–17315

    Article  Google Scholar 

  • Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    Article  PubMed  CAS  Google Scholar 

  • Dominguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Söldner R, Carballido-López R (2011) Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333:225–228

    Article  PubMed  CAS  Google Scholar 

  • Draper O, Byrne ME, Li Z, Keyhani S, Barrozo JC, Jensen G, Komeili A (2011) MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol Microbiol 82:342–354

    Article  PubMed  CAS  Google Scholar 

  • Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JN, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931–2945

    Article  PubMed  CAS  Google Scholar 

  • Duguet E, Mornet S, Vasseur S, Devoisselle JM (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1:157–168

    Article  PubMed  CAS  Google Scholar 

  • Dunin-Borkowski RE, McCartney MR, Frankel RB, Bazylinski DA, Pósfai M, Buseck PR (1998) Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282:1868–1870

    Article  PubMed  CAS  Google Scholar 

  • Dunin-Borkowski RE, McCartney MR, Pósfai M, Frankel RB, Bazylinski DA, Buseck PR (2001) Off-axis electron holography of magnetotactic bacteria: magnetic microstructure of strains MV-1 and MS-1. Eur J Mineral 13:671–684

    Article  CAS  Google Scholar 

  • Dutz S, Hergt R, Mürbe J, Töpfer J, Müller R, Zeisberger M, Andrä W, Bellemann ME (2005) Magnetic nanoparticles for biomedical heating applications. Z Phys Chem 220:145–151

    Article  CAS  Google Scholar 

  • Dutz S, Hergt R, Mürbe J, Müller R, Zeisberger M, Andrä W, Töpfer J, Bellemann ME (2007) Hysteresis losses of magnetic nanoparticle powders in the single domain size range. J Magn Magn Mater 308:305–312

    Article  CAS  Google Scholar 

  • Evans ME, Heller F (2003) Environmental magnetism: principles and applications of enviromagnetics. Academic, San Diego, 311

    Google Scholar 

  • Faivre D, Bottger LH, Matzanke BF, Schüler D (2007) Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew Chem Int Ed 46:8495–8499

    Article  CAS  Google Scholar 

  • Faivre D, Menguy N, Pósfai M, Schüler D (2008) Environmental parameters affect the physical properties of fast-growing magnetosomes. Am Mineral 93:463–469

    Article  CAS  Google Scholar 

  • Faivre D, Fischer A, Garcia-Rubio I, Mastrogiacomo G, Gehring AU (2010) Development of cellular magnetic dipoles in magnetotactic bacteria. Biophys J 99:1268–1273

    Article  PubMed  CAS  Google Scholar 

  • Fanning AS, Anderson JM (1996) Protein-protein interactions: PDZ domain networks. Curr Biol 6:1385–1388

    Article  PubMed  CAS  Google Scholar 

  • Farina M, Lins de Barros H, Esquivel DMS, Danon J (1983) Ultrastructure of a magnetotactic bacterium. Biol Cell 48:85–88

    Google Scholar 

  • Farina M, Motta de Esquivel D, Lins de Barros HGP (1990) Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature 343:256–258

    Article  CAS  Google Scholar 

  • Farina M, Kachar B, Lins U, Broderick R, Lins de Barros HGP (1994) The observation of large magnetite (Fe3O4) crystals from magnetotactic bacteria by electron and atomic force microscopy. J Microsc 173:1–8

    Article  CAS  Google Scholar 

  • Fassbinder JWE, Stanjek H, Vali H (1990) Occurrence of magnetic bacteria in soil. Nature 343:161–162

    Article  PubMed  CAS  Google Scholar 

  • Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Flies CB, Jonkers HM, de Beer D, Bosselmann K, Böttcher ME, Schüler D (2005a) Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol Ecol 52:185–195

    Article  PubMed  CAS  Google Scholar 

  • Flies CB, Peplies J, Schüler D (2005b) Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl Environ Microbiol 71:2723–2731

    Article  PubMed  CAS  Google Scholar 

  • Frankel RB (1984) Magnetic guidance of organisms. Annu Rev Biophys Biomol Struct 13:85–103

    Article  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA (2004) Magnetosome mysteries. ASM News 70:176–183

    Google Scholar 

  • Frankel RB, Blakemore RP (1980) Navigational compass in freshwater magnetotactic bacteria. J Magn Magn Mater 15–18:1562–1564

    Article  Google Scholar 

  • Frankel RB, Moskowitz BM (2003) Biogenic magnets. In: Miller JS, Drillon M (eds) Magnetism: molecules to materials IV. Wiley-VCH, Weinheim, pp 205–231

    Google Scholar 

  • Frankel RB, Blakemore RP, Wolfe RS (1979) Magnetite in freshwater magnetic bacteria. Science 203:1355–1357

    Article  PubMed  CAS  Google Scholar 

  • Frankel RB, Papaefthymiou GC, Blakemore RP, O’Brien W (1983) Fe3O4 precipitation in magnetotactic bacteria. Biochim Biophys Acta 763:147–159

    Article  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophys J73:994–1000

    Article  Google Scholar 

  • Frankel RB, Bazylinski DA, Schüler D (1998) Biomineralization of magnetic iron minerals in magnetotactic bacteria. Supramol Sci 5:383–390

    Article  CAS  Google Scholar 

  • Frankel RB, Williams TJ, Bazylinski DA (2007) Magneto-aerotaxis. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg, pp 1–24

    Chapter  Google Scholar 

  • Fukuda Y, Okamura Y, Takeyama H, Matsunaga T (2006) Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett 580:801–812

    Article  PubMed  CAS  Google Scholar 

  • Funaki M, Sakai H, Matsunaga T (1989) Identification of the magnetic poles on strong magnetic grains from meteorites using magnetotactic bacteria. J Geomagn Geoelectr 41:77–87

    Article  Google Scholar 

  • Funaki M, Sakai H, Matsunaga T, Hirose S (1992) The S-pole distribution on magnetic grains in pyroxenite determined by magnetotactic bacteria. Phys Earth Planet Inter 70:253–260

    Article  Google Scholar 

  • Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–225

    Article  PubMed  CAS  Google Scholar 

  • Geelhoed JS, Kleerebezem R, Sorokin DY, Stams AJM, van Loosdrecht MCM (2010) Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetspirillum strain J10 and Magnetospirillum gryphiswaldense. Environ Microbiol 12:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Gehring A, Kind J, Charilaou M, García-Rubio I (2011) The detection of magnetotactic bacteria and magnetofossils by means of magnetic anisotropy. Earth Planet Sci Lett 309:113–117

    Article  CAS  Google Scholar 

  • Ginet N, Pardoux R, Adryanczyk G, Garcia D, Brutesco C, Pignol D (2011) Single-step production of a recyclable nanobiocatalyst for scavenging organophosphate pesticides using functionalized bacterial magnetosomes. PLoS One 6:e21442

    Article  PubMed  CAS  Google Scholar 

  • Glöckl G, Hergt R, Zeisberger M, Dutz S, Nagel S, Weitschies W (2006) Effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. JPhys Condens Matter 18:S2935–S2949

    Article  CAS  Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    PubMed  CAS  Google Scholar 

  • Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D (2005) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183:9–18

    Article  PubMed  CAS  Google Scholar 

  • Greenberg M, Canter K, Mahler I, Tornheim A (2005) Observation of magnetoreceptive behavior in a multicellular magnetotactic prokaryote in higher than geomagnetic fields. Biophys J 88:1496–1499

    Article  PubMed  CAS  Google Scholar 

  • Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582

    Article  PubMed  Google Scholar 

  • Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70:1040–1050

    Article  PubMed  CAS  Google Scholar 

  • Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32:215–226

    Article  PubMed  CAS  Google Scholar 

  • Hanson TE, Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98:4397–4402

    Article  PubMed  CAS  Google Scholar 

  • Hanzlik M, Winklhofer M, Petersen N (1996) Spatial arrangement of chains of magnetosomes in magnetotactic bacteria. Earth Planet Sci Lett 145:125–134

    Article  CAS  Google Scholar 

  • Hanzlik M, Winklhofer M, Petersen N (2002) Pulsed-field-remanence measurements on individual magnetotactic bacteria. J Magn Magn Mater 248:258–267

    Article  CAS  Google Scholar 

  • Harasko G, Pfützner H, Rapp E, Futschik K, Schüler D (1993) Determination of the concentration of magnetotactic bacteria by means of susceptibility measurements. Jpn J Appl Phys 32(Part 1):252–260

    Article  Google Scholar 

  • Harasko G, Pfützner H, Futschik K (1995) Domain analysis by means of magnetotactic bacteria. IEEE Trans Magn 31:938–949

    Article  CAS  Google Scholar 

  • Hergt R, Andrä W, D’Ambly CG, Higler I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34:3745–3754

    Article  CAS  Google Scholar 

  • Hergt R, Hiergeist R, Hilger I, Kaiser WA (2002) Magnetic nanoparticles for thermoablation. Recent Res Dev Mater Sci 3:723–742

    CAS  Google Scholar 

  • Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293:80–86

    Article  CAS  Google Scholar 

  • Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18:S2919–S2934

    Article  CAS  Google Scholar 

  • Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermenter. Appl Microbiol Biotechnol 61:536–544

    PubMed  CAS  Google Scholar 

  • Heywood BR, Bazylinski DA, Garratt-Reed AJ, Mann S, Frankel RB (1990) Controlled biosynthesis of greigite (Fe3S4) in magnetotactic bacteria. Naturwissenschaften 77:536–538

    Article  Google Scholar 

  • Heywood BR, Mann S, Frankel RB (1991) Structure, morphology and growth of biogenic greigite (Fe3S4). In: Alpert M, Calvert P, Frankel RB, Rieke P, Tirrell D (eds) Materials synthesis based on biological processes. Materials Research Society, Pittsburgh, pp 93–108

    Google Scholar 

  • Hilger I, Andrä W, Hergt R, Hiergeist R, Schubert H, Kaiser WA (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575

    PubMed  CAS  Google Scholar 

  • Hilger I, Hergt R, Kaiser WA (2005) Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proc Nanobiotechnol 152:33–39

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PS, Pine L, Bell S (1983) Production of superoxide and hydrogen peroxide in medium used to culture Legionella pneumophila: catalytic decomposition by charcoal. Appl Environ Microbiol 45:784–791

    PubMed  CAS  Google Scholar 

  • Huettel M, Forster S, Kloser S, Fossing H (1996) Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl Environ Microbiol 62:1863–1872

    PubMed  CAS  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    PubMed  CAS  Google Scholar 

  • Isambert A, Menguy N, Larquet E, Guyot F, Valet J-P (2007) Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. Am Mineral 92:621–630

    Article  CAS  Google Scholar 

  • Ito A, Honda H, Kobayashi T (2006) Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother 55:320–328

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Lopez C, Romanek CS, Bazylinski DA (2010) Magnetite as a prokaryotic biomarker: a review. J Geophys Res-Biogeo 115:G00G03

    Article  Google Scholar 

  • Jogler C, Schüler D (2007) Genetic analysis of magnetosome biomineralization. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Berlin, pp 133–161

    Chapter  Google Scholar 

  • Jogler C, Kube M, Schübbe S, Ullrich S, Teeling H, Bazylinski DA, Reinhardt R, Schüler D (2009a) Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ Microbiol 11:1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Jogler C, Lin W, Meyerdierks A, Kube M, Katzmann E, Flies C, Pan Y, Amann R, Reinhardt R, Schüler D (2009b) Toward cloning of the magnetotactic metagenome: identification of magnetosome island gene clusters in uncultivated magnetotactic bacteria from different aquatic sediments. Appl Environ Microbiol 75:3972–3979

    Article  PubMed  CAS  Google Scholar 

  • Jogler C, Niebler M, Lin W, Kube M, Wanner G, Kolinko S, Stief P, Beck AJ, de Beer D, Petersen N, Pan Y, Amann R, Reinhardt R, Schüler D (2010) Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum’ via ultrastructural, geochemical, ecological and metagenomic methods. Environ Microbiol 12:2466–2478

    Article  PubMed  CAS  Google Scholar 

  • Jogler C, Wanner G, Kolinko S, Niebler M, Amann R, Petersen N, Kube M, Reinhardt R, Schüler D (2011) Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum. Proc Natl Acad Sci USA 108:1134–1139

    Article  PubMed  CAS  Google Scholar 

  • Jones LJ, Carballido-Lopez R, Errington J (2001) Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922

    Article  PubMed  CAS  Google Scholar 

  • Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    Article  PubMed  CAS  Google Scholar 

  • Katzmann E, Scheffel A, Gruska M, Plitzko JM, Schüler D (2010) Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense. Mol Microbiol 77:208–224

    Article  PubMed  CAS  Google Scholar 

  • Katzmann E, Müller FD, Lang C, Messerer M, Winklhofer M, Plitzko JM, Schüler D (2011) Magnetosome chains are recruited to cellular division sites and split by asymmetric septation. Mol Microbiol 82:1316–1329

    Article  PubMed  Google Scholar 

  • Keim CN, Lins U, Farina M (2003) Iron oxide and iron sulfide crystals in magnetotactic multicellular aggregates. Acta Microsc 12:3–4

    Google Scholar 

  • Keim CN, Abreu F, Lins U, Lins de Barros HGP, Farina M (2004a) Cell organization and ultrastructure of a magnetotactic multicellular organism. J Struct Biol 145:254–262

    Article  PubMed  Google Scholar 

  • Keim CN, Martins JL, Abreu F, Rosado AS, Lins de Barros HGP, Borojevic R, Lins U, Farina M (2004b) Multicellular life cycle of magnetotactic multicellular prokaryotes. FEMS Microbiol Lett 240:203–208

    Article  PubMed  CAS  Google Scholar 

  • Keim CN, Martins JL, Lins de Barros HGP, Lins U, Farina M (2007) Structure, behavior, ecology and diversity of multicellular magnetotactic prokaryotes. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Berlin, pp 103–132

    Chapter  Google Scholar 

  • Keim CN, Lins U, Farina M (2009) Manganese in biogenic magnetite crystals from magnetotactic bacteria. FEMS Microbiol Lett 292:250–253

    Article  PubMed  CAS  Google Scholar 

  • Kim BY, Kodama KP, Moeller RE (2005) Bacterial magnetite produced in water column dominates lake sediment mineral magnetism: Lake Ely, USA. Geophys J Int 163:26–37

    Article  CAS  Google Scholar 

  • Kind J, Gehring AU, Winklhofer M, Hirt AM (2011) Combined use of magnetometry and spectroscopy for identifying magnetofossils in sediments. Geochem Geophy Geosy 12:Q08008

    Article  Google Scholar 

  • Kolinko I, Jogler C, Katzmann E, Schüler D (2011) Frequent mutations within the genomic magnetosome island of Magnetospirillum gryphiswaldense are mediated by RecA. J Bacteriol 193:5328–5334

    Article  PubMed  CAS  Google Scholar 

  • Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J, Schüler D (2012) Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 14:1709–1721

    Article  PubMed  CAS  Google Scholar 

  • Komeili A (2007a) Cell biology of magnetosome formation. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Berlin, pp 163–174

    Chapter  Google Scholar 

  • Komeili A (2007b) Molecular mechanisms of magnetosome formation. Annu Rev Biochem 76:351–356

    Article  PubMed  CAS  Google Scholar 

  • Komeili A, Vali H, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci USA 101:3839–3844

    Article  PubMed  CAS  Google Scholar 

  • Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245

    Article  PubMed  CAS  Google Scholar 

  • Kopp RE, Kirschvink JL (2008) The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci Rev 86:42–61

    Article  Google Scholar 

  • Krieg NR, Hoffman PS (1986) Microaerophily and oxygen toxicity. Annu Rev Microbiol 40:107–130

    Article  PubMed  CAS  Google Scholar 

  • Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Magnetic cell separation using antibody binding with protein A expressed on bacterial magnetic particles. Anal Chem 76:6207–6213

    Article  PubMed  CAS  Google Scholar 

  • Lang C, Schüler D (2006) Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J Phys Condens Matter 18:S2815–S2828

    Article  CAS  Google Scholar 

  • Lang C, Schüler D, Faivre D (2007) Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 7:144–151

    Article  PubMed  CAS  Google Scholar 

  • Lee J-H, Huh Y-M, Jun Y-W, Seo J-W, Jang J-T, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre C, Bernadac A, Pradel N, Wu LF, Yu-Zhang K, Xiao T, Yonnet JP, Lebouc A, Song T, Fukumori Y (2007) Characterization of Mediterranean magnetotactic bacteria. J Ocean Univ China (Oceanic and Coastal Sea Research) 6:355–359

    Article  CAS  Google Scholar 

  • Lefèvre CT, Bernadac A, Yu-Zhang K, Pradel N, Wu LF (2009) Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ Microbiol 11:1646–1657

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Abreu F, Lins U, Bazylinski DA (2010a) Non-magnetotactic multicellular prokaryotes from low saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol 76:3220–3227

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Abreu F, Schmidt ML, Lins U, Frankel RB, Hedlund BP, Bazylinski DA (2010b) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada USA. Appl Environ Microbiol 76:3740–3743

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Santini CL, Bernadac A, Zhang WJ, Li Y, Wu LF (2010c) Calcium ion-mediated assembly and function of glycosylated flagellar sheath of marine magnetotactic bacterium. Mol Microbiol 78:1304–1312

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA (2011a) Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol 13:538–549

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Frankel RB, Pósfai M, Prozorov T, Bazylinski DA (2011b) Isolation of obligately alkaliphilic magnetotactic bacteria from extremely alkaline environments. Environ Microbiol 13:2342–2350

    Article  PubMed  Google Scholar 

  • Lefèvre CT, Pósfai M, Abreu F, Lins U, Frankel RB, Bazylinski DA (2011c) Morphological features of elongated-anisotropic magnetosome crystals in magnetotactic bacteria of the Nitrospirae phylum and the Deltaproteobacteria class. Earth Planet Sci Lett 312:194–200

    Article  CAS  Google Scholar 

  • Lefèvre CT, Menguy N, Abreu F, Lins U, Pósfai M, Prozorov T, Pignol D, Frankel RB, Bazylinski DA (2011d) A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria. Science 334:1720–1723

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre CT, Viloria N, Schmidt ML, Pósfai M, Frankel RB, Bazylinski DA (2012) Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J 6:440–450

    Article  PubMed  CAS  Google Scholar 

  • Li J, Pan Y, Liu Q, Yu-Zhang K, Menguy N, Che R, Qin H, Lin W, Wu W, Petersen N, Yang X (2010) Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria. Earth Planet Sci Lett 293:368–376

    Article  CAS  Google Scholar 

  • Lin W, Pan Y (2009) Uncultivated magnetotactic cocci from Yuandadu Park in Beijing. China Appl Environ Microbiol 75:4046–4052

    Article  CAS  Google Scholar 

  • Lin W, Tian L, Li J, Pan Y (2008) Does capillary racetrack-based enrichment reflect the diversity of uncultivated magnetotactic cocci in environmental samples? FEMS Microbiol Lett 279:202–206

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Li J, Schüler D, Jogler C, Pan Y (2009) Diversity analysis of magnetotactic bacteria in Lake Miyun, northern China, by restriction fragment length polymorphism. Syst Appl Microbiol 5:342–350

    Article  CAS  Google Scholar 

  • Lin W, Li J, Pan Y (2012) Newly isolated but uncultivated magnetotactic bacterium of the phylum Nitrospirae from Beijing, China. Appl Environ Microbiol 78:668–675

    Article  PubMed  CAS  Google Scholar 

  • Lins U, Farina M (1999) Organisation of cells in magnetotactic multicellular aggregates. Microbiol Res 154:9–13

    Article  Google Scholar 

  • Lins U, Freitas F, Keim CN, Farina M (2000) Electron spectroscopic imaging of magnetotactic bacteria: magnetosome morphology and diversity. Microsc Microanal 6:463–470

    PubMed  CAS  Google Scholar 

  • Lins U, McCartney MR, Farina M, Buseck PR, Frankel RB (2005) Crystal habits and magnetic microstructures of magnetosomes in coccoid magnetotactic bacteria. Appl Environ Microbiol 71:4902–4905

    Article  PubMed  CAS  Google Scholar 

  • Lins U, Keim CN, Evans FF, Buseck PR, Farina M (2007) Magnetite (Fe3O4) and greigite (Fe3S4) crystals in multicellular magnetotactic prokaryotes. Geomicrobiol J 24:43–50

    Article  CAS  Google Scholar 

  • Lipinska B, Fayet O, Baird L, Georgopoulos C (1989) Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171:1574–1584

    PubMed  CAS  Google Scholar 

  • Liu Y, Li GR, Guo FF, Jiang W, Li Y, Li LJ (2010) Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microb Cell Fact 9:99

    Article  PubMed  CAS  Google Scholar 

  • Lohße A, Ullrich S, Katzmann E, Borg S, Wanner G, Richter M, Voigt B, Schweder T, Schüler D (2011) Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization. PLoS One 6:e25561

    Article  PubMed  CAS  Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    PubMed  CAS  Google Scholar 

  • Mahillon J, Leonard C, Chandler M (1999) IS elements as constituents of bacterial genomes. Res Microbiol 150:675–687

    Article  PubMed  CAS  Google Scholar 

  • Mann S, Frankel RB (1989) Magnetite biomineralization in unicellular organisms. In: Mann S, Webb J, Williams RJP (eds) Biomineralization: chemical and biochemical perspectives. VCH, New York, pp 389–426

    Google Scholar 

  • Mann S, Frankel RB, Blakemore RP (1984a) Structure, morphology and crystal growth of bacterial magnetite. Nature 405:405–407

    Article  Google Scholar 

  • Mann S, Moench TT, Williams RJP (1984b) A high resolution electron microscopic investigation of bacterial magnetite. Proc Roy Soc Lond B Bio 221:385–393

    Article  CAS  Google Scholar 

  • Mann S, Sparks NHC, Blakemore RP (1987a) Ultrastructure and characterization of anisotropic inclusions in magnetotactic bacteria. Proc Roy Soc Lond B Bio 231:469–476

    Article  CAS  Google Scholar 

  • Mann S, Sparks NHC, Blakemore RP (1987b) Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria. Proc Roy Soc Lond B Bio 231:477–487

    Article  CAS  Google Scholar 

  • Mann S, Sparks NCH, Board RG (1990a) Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism, and biotechnology. Adv Microbial Phys 31:125–181

    Article  CAS  Google Scholar 

  • Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990b) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–260

    Article  CAS  Google Scholar 

  • Martins JL, Silveira TS, Silva KT, Lins U (2009) Salinity dependence of the distribution of multicellular magnetotactic prokaryotes in a hypersaline lagoon. Int Microbiol 12:193–201

    PubMed  CAS  Google Scholar 

  • Maruyama K, Takeyama H, Nemoto E, Tanaka T, Yoda K, Matsunaga T (2004) Single nucleotide polymorphism detection in aldehyde dehydrogenase 2 (ALDH2) gene using bacterial magnetic particles based on dissociation curve analysis. Biotechnol Bioeng 87:687–694

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Endo J, Osakabe N, Tonomura A, Arii T (1983) Morphology and structure of biogenic magnetite. Nature 303:411–412

    Article  Google Scholar 

  • Matsunaga T (1991) Applications of bacterial magnets. Trends Biotechnol 9:91–95

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Arakaki A (2007) Molecular bioengineering of bacterial magnetic particles for biotechnological applications. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Berlin, pp 227–254

    Chapter  Google Scholar 

  • Matsunaga T, Kamiya S (1987) Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol 26:328–332

    Article  CAS  Google Scholar 

  • Matsunaga T, Takeyama H (1998) Biomagnetic nanoparticle formation and application. Supramol Sci 5:391–394

    Article  CAS  Google Scholar 

  • Matsunaga T, Hashimoto K, Nakamura N, Nakamura K, Hashimoto S (1989) Phagocytosis of bacterial magnetite by leucocytes. Appl Microbiol Biotechnol 31:401–405

    Article  Google Scholar 

  • Matsunaga T, Tadokoro F, Nakamura N (1990) Mass culture of magnetic bacteria and their application to flow type immunoassays. IEEE Trans Magn 26:1557–1559

    Article  CAS  Google Scholar 

  • Matsunaga T, Nakamura C, Burgess JG, Sode K (1992) Gene-transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis. J Bacteriol 174:2748–2753

    PubMed  CAS  Google Scholar 

  • Matsunaga T, Tsujimura N, Kamiya S (1996) Enhancement of magnetic particle production by nitrate and succinate fed-batch culture of Magnetospirillum sp. AMB-1. Biotechnol Tech 10:495–500

    Article  CAS  Google Scholar 

  • Matsunaga T, Higashi Y, Tsujimura N (1997) Drug delivery by magnetoliposomes containing bacterial magnetic particles. Cell Eng 2:7–11

    CAS  Google Scholar 

  • Matsunaga T, Sato R, Kamiya S, Tanaka T, Takeyama H (1999) Chemiluminescence enzyme immunoassay using protein A-bacterial magnetite complex. J Magn Magn Mater 194:126–131

    Article  CAS  Google Scholar 

  • Matsunaga T, Togo H, Kikuchi T, Tanaka T (2000a) Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp. AMB-1. Biotechnol Bioeng 70:704–709

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Tsujimura N, Okamura Y, Takeyama H (2000b) Cloning and characterization of a gene, mpsA, encoding a protein associated with intracellular magnetic particles from Magnetospirillum sp. strain AMB-1. Biochem Biophys Res Commun 268:932–937

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Arakaki A, Takahoko M (2002) Preparation of luciferase-bacterial magnetic particle complex by artificial integration of MagA-luciferase fusion protein into the bacterial magnetic particle membrane. Biotechnol Bioeng 77:614–618

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res 12:157–166

    Article  PubMed  CAS  Google Scholar 

  • Matsunaga T, Nemoto M, Arakaki A, Tanaka M (2009) Proteomic analysis of irregular, bullet-shaped magnetosomes in the sulphate-reducing magnetotactic bacterium Desulfovibrio magneticus RS-1. Proteomics 9:3341–3352

    Article  PubMed  CAS  Google Scholar 

  • McAteer MA, Sibson NR, von Zur Muhlen C, Schneider JE, Lowe AS, Warrick N, Channon KM, Anthony DC, Choudhury RP (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13:1253–1258

    Article  PubMed  CAS  Google Scholar 

  • McCartney MR, Lins U, Farina M, Buseck PR, Frankel RB (2001) Magnetic microstructure of bacterial magnetite by electron holography. Eur J Mineral 13:685–689

    Article  CAS  Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XD, Maechling CR, Zare RN (1996) Search for past life on mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930

    Article  PubMed  CAS  Google Scholar 

  • Meldrum FC, Heywood BR, Mann S, Frankel RB, Bazylinski DA (1993a) Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium. Proc Roy Soc Lond B Bio 251:231–236

    Article  Google Scholar 

  • Meldrum FC, Heywood BR, Mann S, Frankel RB, Bazylinski DA (1993b) Electron microscopy study of magnetosomes in two cultured vibroid magnetotactic bacteria. Proc Roy Soc Lond B Bio 251:237–242

    Article  Google Scholar 

  • Moench TT (1988) Bilophococcus magnetotacticus gen. nov. sp. nov., a motile, magnetic coccus. Antonie Van Leeuwenhoek 54:483–496

    Article  PubMed  CAS  Google Scholar 

  • Moench TT, Konetzka WA (1978) A novel method for the isolation and study of a magnetotactic bacterium. Arch Microbiol 119:203–212

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz BM, Bazylinski DA, Egli R, Frankel RB, Edwards KJ (2008) Magnetic properties of marine magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA). Geophys J Int 174:75–92

    Article  CAS  Google Scholar 

  • Murat D, Quinlan A, Vali H, Komeili A (2010) Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proc Natl Acad Sci USA 107:5593–5598

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Matsunaga T (1993) Highly sensitive detection of allergen using bacterial magnetic particles. Anal Chim Acta 281:585–589

    Article  CAS  Google Scholar 

  • Nakamura N, Hashimoto K, Matsunaga T (1991) Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Anal Chem 63:268–272

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N, Burgess JG, Yagiuda K, Kudo S, Sakaguchi T, Matsunaga T (1993) Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal Chem 65:2036–2039

    Article  PubMed  CAS  Google Scholar 

  • Nakamura C, Burgess JG, Sode K, Matsunaga T (1995a) An iron-regulated gene, magA, encoding an iron transport protein of Magnetospirillum sp. strain AMB-1. J Biol Chem 270:28392–28396

    Article  PubMed  CAS  Google Scholar 

  • Nakamura C, Kikuchi T, Burgess JG, Matsunaga T (1995b) Iron-regulated expression and membrane localization of the MagA protein in Magnetospirillum sp. strain AMB-1. J Biochem 118:23–27

    PubMed  CAS  Google Scholar 

  • Nakayama H, Arakaki H, Maruyama K, Takeyama H, Matsunaga T (2003) Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles. Biotechnol Bioeng 84:96–102

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa H, Arakaki A, Narita-Yamada S, Yashiro I, Jinno K, Aoki N, Tsuruyama A, Okamura Y, Tanikawa S, Fujita N, Takeyama H, Matsunaga T (2009) Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res 19:1801–1808

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1984) A brief history of iron metabolism. Biol Metals 4:1–6

    Article  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269

    Article  CAS  Google Scholar 

  • Ohuchi S, Schüler D (2009) In vivo display of a multisubunit enzyme complex on biogenic magnetic nanoparticles. Appl Environ Microbiol 75:7734–7738

    Article  PubMed  CAS  Google Scholar 

  • Okamura Y, Takeyama H, Matsunaga T (2000) Two-dimensional analysis of proteins specific to the bacterial magnetic particle membrane from Magnetospirillum sp. AMB-1. Appl Biochem Biotechnol 84–86:441–446

    Article  PubMed  Google Scholar 

  • Okamura Y, Takeyama H, Matsunaga T (2001) A magnetosome-specific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. J Biol Chem 276:48183–48188

    Article  PubMed  CAS  Google Scholar 

  • Okamura Y, Takeyama H, Sekine T, Sakaguchi T, Wahyudi AT, Sato R, Kamiya S, Matsunaga T (2003) Design and application of a new cryptic-plasmid-based shuttle vector for Magnetospirillum magneticum. Appl Environ Microbiol 69:4274–4277

    Article  PubMed  CAS  Google Scholar 

  • Okuda Y, Fukumori Y (2001) Expression and characterization of a magnetosome-associated protein, TPR-containing Mam22, in Escherichia coli. FEBS Lett 491:169–173

    Article  PubMed  CAS  Google Scholar 

  • Okuda Y, Denda K, Fukumori Y (1996) Cloning and sequencing of a gene encoding a new member of the tetratricopeptide protein family from magnetosomes of Magnetospirillum magnetotacticum. Gene 171:99–102

    Article  PubMed  CAS  Google Scholar 

  • Oldfield F, Wu RJ (2000) The magnetic properties of the recent sediments of Brothers Water, NW England. J Paleolimnol 23:165–174

    Article  Google Scholar 

  • Ota H, Takeyama H, Nakayama H, Katoh T, Matsunaga T (2003) SNP detection in transforming growth factor-beta1 gene using bacterial magnetic particles. Biosens Bioelectron 18:683–687

    Article  PubMed  CAS  Google Scholar 

  • Palache C, Berman H, Frondel C (1944) Dana’s system of mineralogy. Wiley, New York, 384

    Google Scholar 

  • Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26:209–221

    Article  PubMed  CAS  Google Scholar 

  • Pan Y, Petersen N, Davila AF, Zhang L, Winklhofer M, Liu Q, Hanzlik M, Zhu R (2005) The detection of bacterial magnetite in recent sediments of Lake Chiemsee (southern Germany). Earth Planet Sci Lett 232:109–123

    Article  CAS  Google Scholar 

  • Paoletti LC, Blakemore RP (1986) Hydroxamate production by Aquaspirillum magnetotacticum. J Bacteriol 167:73–76

    PubMed  CAS  Google Scholar 

  • Paulsen IT, Park JH, Choi PS, Saier MH Jr (1997) A family of Gram-negative bacterial outer membrane factors that function in the export of proteins,carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol Lett 156:1–8

    Article  PubMed  CAS  Google Scholar 

  • Penninga I, de Waard H, Moskowitz BM, Bazylinski DA, Frankel RB (1995) Remanence curves for individual magnetotactic bacteria using a pulsed magnetic field. J Magn Magn Mater 149:279–286

    Article  CAS  Google Scholar 

  • Perantoni M, Esquivel DM, Wajnberg E, Acosta-Avalos D, Cernicchiaro G, Lins de Barros H (2009) Magnetic properties of the microorganism Candidatus Magnetoglobus multicellularis. Naturwissenschaften 96:685–690

    Article  PubMed  CAS  Google Scholar 

  • Petersen N, von Dobeneck T, Vali H (1986) Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature 320:611–615

    Article  CAS  Google Scholar 

  • Petersen N, Weiss DG, Vali H (1989) Magnetic bacteria in lake sediments. In: Lowes FJ, Collinson DW, Parry JH, Runcorn SK, Tozer DC, Soward A (eds) Geomagnetism and paleomagnetism. Kluwer Academic, Dordrecht, pp 231–241

    Chapter  Google Scholar 

  • Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB, Cleland D, Krader P (2003) Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332

    Article  PubMed  CAS  Google Scholar 

  • Pollithy A, Romer T, Lang C, Müller FD, Helma J, Leonhardt H, Rothbauer U, Schüler D (2011) Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 77:6165–6171

    Article  PubMed  CAS  Google Scholar 

  • Ponting CC, Phillips C (1996) Rapsyn’s knobs and holes: eight tetratrico peptide repeats. Biochem J 314:1053–1054

    PubMed  CAS  Google Scholar 

  • Pósfai M, Buseck PR, Bazylinski DA, Frankel RB (1998a) Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. Science 280:880–883

    Article  PubMed  Google Scholar 

  • Pósfai M, Buseck PR, Bazylinski DA, Frankel RB (1998b) Iron sulfides from magnetotactic bacteria: structure, compositions, and phase transitions. Am Mineral 83:1469–1481

    Google Scholar 

  • Pósfai M, Cziner K, Marton E, Marton P, Buseck PR, Frankel RB, Bazylinski DA (2001) Crystal-size distributions and possible biogenic origin of Fe sulfides. Eur J Mineral 13:691–703

    Article  Google Scholar 

  • Pósfai M, Moskowitz BM, Arató B, Schüler D, Flies C, Bazylinski DA, Frankel RB (2006) Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth Planet Sci Lett 249:444–455

    Article  CAS  Google Scholar 

  • Pradel N, Santini CL, Bernadac A, Fukumori Y, Wu LF (2006) Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc Natl Acad Sci USA 103:17485–17489

    Article  PubMed  CAS  Google Scholar 

  • Proksch RB, Moskowitz BM, Dahlberg ED, Schaeffer T, Bazylinski DA, Frankel RB (1995) Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium. Appl Phys Lett 66:2582–2584

    Article  CAS  Google Scholar 

  • Prozorov T, Mallapragada SK, Narasimhan B, Wang L, Palo P, Nilsen-Hamilton M, Williams TJ, Bazylinski DA, Prozorov R, Canfield PC (2007) Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystals. Adv Funct Mater 17:951–957

    Article  CAS  Google Scholar 

  • Qi L, Li J, Zhang W, Liu J, Rong C, Li Y, Wu L (2012) Fur in Magnetospirillum gryphiswaldense influences magnetosomes formation and directly regulates the genes involved in iron and oxygen metabolism. PLoS One 7:e29572

    Article  PubMed  CAS  Google Scholar 

  • Quinlan A, Murat D, Vali H, Komeili A (2011) The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization. Mol Microbiol 80:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Reiter WD, Palm P (1990) Identification and characterization of a defective SSV1 genome integrated into a tRNA gene in the archaebacterium Sulfolobus sp. B12. Mol Gen Genet 221:65–71

    Article  PubMed  CAS  Google Scholar 

  • Richter M, Kube M, Bazylinski DA, Lombardot T, Reinhardt R, Glockner FO, Schüler D (2007) Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group specific genes with putative functions in magnetosome biomineralization and magnetotaxis. J Bacteriol 189:4899–4910

    Article  PubMed  CAS  Google Scholar 

  • Rioux JB, Philippe N, Pereira S, Pignol D, Wu LF, Ginet N (2010) A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLoS One 5:e9151

    Article  PubMed  CAS  Google Scholar 

  • Rodgers FG, Blakemore RP, Blakemore NA, Frankel RB, Bazylinski DA, Maratea D, Rodgers C (1990a) Intercellular structure in a many-celled magnetotactic prokaryote. Arch Microbiol 145:18–22

    Google Scholar 

  • Rodgers FG, Blakemore RP, Blakemore NA, Frankel RB, Bazylinski DA, Maratea D, Rodgers C (1990b) Intercellular junctions, motility and magnetosome structure in a multicellular magnetotactic prokaryote. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum, New York, pp 231–237

    Google Scholar 

  • Sakaguchi T, Burgess JG, Matsunaga T (1993) Magnetite formation by a sulphate-reducing bacterium. Nature 365:47–49

    Article  CAS  Google Scholar 

  • Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int J Syst Evol Microbiol 52:215–221

    PubMed  CAS  Google Scholar 

  • Scheffel A, Schüler D (2007) The acidic repetitive domain of the Magnetospirillum gryphiswaldense MamJ protein displays hypervariability but is not required for magnetosome chain assembly. J Bacteriol 189:6437–6446

    Article  PubMed  CAS  Google Scholar 

  • Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114

    Article  PubMed  CAS  Google Scholar 

  • Scheffel A, Gärdes A, Grünberg K, Wanner G, Schüler D (2008) The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J Bacteriol 190:377–386

    Article  PubMed  CAS  Google Scholar 

  • Schleifer K-H, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Kohler M (1991) The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385

    Article  Google Scholar 

  • Schübbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour MH, Mayer F, Reinhardt R, Schüler D (2003) Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bacteriol 185:5779–5790

    Article  PubMed  CAS  Google Scholar 

  • Schübbe S, Würdemann C, Peplies J, Heyen U, Wawer C, Glöckner FO, Schüler D (2006) Transcriptional organization and regulation of magnetosome operons in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 72:5757–5765

    Article  PubMed  CAS  Google Scholar 

  • Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross CA, Schüler D, Cox BL, Nealson KH, Bazylinski DA (2009) Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 75:4835–4852

    Article  PubMed  CAS  Google Scholar 

  • Schüler D (2002) The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol 5:209–214

    Article  PubMed  CAS  Google Scholar 

  • Schüler D (2008) Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32:654–672

    Article  PubMed  CAS  Google Scholar 

  • Schüler D, Baeuerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol 166:301–307

    Article  PubMed  Google Scholar 

  • Schüler D, Baeuerlein E (1997) Iron transport and magnetite crystal formation of the magnetic bacterium Magnetospirillum gryphiswaldense. J Phys IV 7:647–650

    Google Scholar 

  • Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 mineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162

    PubMed  Google Scholar 

  • Schüler D, Uhl R, Baeuerlein E (1995) A simple light-scattering method to assay magnetism in Magnetospirillum gryphiswaldense. FEMS Microbiol Lett 132:139–145

    Article  Google Scholar 

  • Schüler D, Spring S, Bazylinski DA (1999) Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization. Syst Appl Microbiol 22:466–471

    Article  PubMed  Google Scholar 

  • Schultheiss D, Schüler D (2003) Development of a genetic system for Magnetospirillum gryphiswaldense. Arch Microbiol 179:89–94

    PubMed  CAS  Google Scholar 

  • Schultheiss D, Kube M, Schüler D (2004) Inactivation of the flagellin gene flaA in Magnetospirillum gryphiswaldense results in nonmagnetotactic mutants lacking flagellar filaments. Appl Environ Microbiol 70:3624–3631

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D (2005) The presumptive magnetosome protein Mms16 is a PHB-granule bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol 187:2416–2425

    Article  PubMed  CAS  Google Scholar 

  • Shapiro OH, Hatzenpichler R, Buckley DH, Zinder SH, Orphan VJ (2011) Multicellular photo-magnetotactic bacteria. Env Microbiol Rep 3:233–238

    Article  Google Scholar 

  • Silva KT, Abreu F, Almeida FP, Keim CN, Farina M, Lins U (2007) Flagellar apparatus of south seeking many celled magnetotactic prokaryotes. Microsc Res Tech 70:10–17

    Article  PubMed  Google Scholar 

  • Simmons SL, Edwards KJ (2007) Unexpected diversity in populations of the many-celled magnetotactic prokaryote. Environ Microbiol 9:206–215

    Article  PubMed  CAS  Google Scholar 

  • Simmons SL, Sievert SM, Frankel RB, Bazylinski DA, Edwards KJ (2004) Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl Environ Microbiol 70:6230–6239

    Article  PubMed  CAS  Google Scholar 

  • Simmons SL, Bazylinski DA, Edwards KJ (2006) South seeking magnetotactic bacteria in the Northern Hemisphere. Science 311:371–374

    Article  PubMed  CAS  Google Scholar 

  • Snowball IF (1991) Magnetic hysteresis properties of greigite (Fe3S4) and a new occurrence in Holocene sediments for Swedish Lappland. Phys Earth Planet Inter 68:32–40

    Article  CAS  Google Scholar 

  • Snowball IF (1994) Bacterial magnetite and the magnetic properties of sediments in a Swedish lake. Earth Planet Sci Lett 126:129–142

    Article  Google Scholar 

  • Snowball IF, Thompson R (1988) The occurrence of greigite in sediments from Loch Lomond. J Quat Sci 3:121–125

    Article  Google Scholar 

  • Snowball I, Zillen L, Sandgren P (2002) Bacterial magnetite in Swedish varved lake sediments: a potential bio marker of environmental change. Quat Int 88:13–19

    Article  Google Scholar 

  • Sode K, Kudo S, Sakaguchi T, Nakamura N, Matsunaga T (1993) Application of bacterial magnetic particles for highly selective messenger-RNA recovery system. Biotechnol Tech 7:688–694

    Article  CAS  Google Scholar 

  • Spormann AM, Wolfe RS (1984) Chemotactic, magnetotactic, and tactile behaviour in a magnetic spirillum. FEMS Microbiol Lett 22:171–177

    Article  CAS  Google Scholar 

  • Spring S, Amann R, Ludwig W, Schleifer KH, Petersen N (1992) Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. Syst Appl Microbiol 15:116–122

    Article  Google Scholar 

  • Spring S, Amann R, Ludwig W, Schleifer KH, van Gemerden H, Petersen N (1993) Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl Environ Microbiol 59:2397–2403

    PubMed  CAS  Google Scholar 

  • Spring S, Amann R, Ludwig W, Schleifer KH, Schüler D, Poralla K, Petersen N (1994) Phylogenetic analysis of uncultured magnetotactic bacteria from the alpha-subclass of proteobacteria. Syst Appl Microbiol 17:501–508

    Article  Google Scholar 

  • Spring S, Lins U, Amann R, Schleifer KH, Ferreira LCS, Esquivel DMS, Farina M (1998) Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes. Arch Microbiol 169:136–147

    Article  PubMed  CAS  Google Scholar 

  • Staniland S, Williams W, Telling N, Van Der Laan G, Harrison A, Ward B (2008) Controlled cobalt doping of magnetosomes in vivo. Nat Nanotechnol 3:158–162

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF (1993) Magnetosomes. J Gen Microbiol 139:1663–1670

    Article  Google Scholar 

  • Stolz JF, Chang SBR, Kirschvink JL (1986) Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature 321:849–851

    Article  Google Scholar 

  • Stolz JF, Lovley DR, Haggerty SE (1990) Biogenic magnetite and the magnetization of sediments. J Geophys Res 95:4355–4361

    Article  Google Scholar 

  • Sun JB, Duan JH, Dai SL, Ren J, Zhang YD, Tian JS, Li Y (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Lett 258:109–117

    Article  PubMed  CAS  Google Scholar 

  • Sun JB, Zhao F, Tang T, Jiang W, Tian JS, Li Y, Li JL (2008) High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermenter supplied solely with air. Appl Microbiol Biotechnol 79:389–397

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Tanaka T, Sasaki T, Nakamura N, Matsunaga T, Mashiko S (1998) High resolution magnetic force microscope images of a magnetic particle chain extracted from magnetic bacteria AMB-1. Jpn J Appl Physiol 37:L1343–L1345

    Article  Google Scholar 

  • Suzuki T, Okamura Y, Calugay RJ, Takeyama H, Matsunaga T (2006) Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. J Bacteriol 188:2275–2279

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Maruyama K, Yoda K, Nemoto E, Udagawa Y, Nakayama H, Takeyama H, Matsunaga T (2003) Development and evaluation of an automated workstation for single nucleotide polymorphism discrimination using bacterial magnetic particles. Biosens Bioelectron 19:325–330

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Okamura Y, Arakaki A, Tanaka T, Takeyama H, Matsunaga T (2006) Origin of magnetosome membrane: proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 6:5234–5247

    Article  PubMed  CAS  Google Scholar 

  • Taoka A, Asada R, Sasaki H, Anzawa K, Wu LF, Fukumori Y (2006) Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum. J Bacteriol 188:3805–3812

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2000) Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64:4049–4081

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, McKay MF, Romanek CS (2001) Truncated hexa-octahedral magnetite crystals in ALH84001: presumptive biosignatures. Proc Natl Acad Sci USA 98:2164–2169

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson EK Jr, Romanek CS (2002) Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Environ Microbiol 68:3663–3672

    Article  PubMed  CAS  Google Scholar 

  • Thornhill RH, Burgess JG, Sakaguchi T, Matsunaga T (1994) A morphological classification of bacteria containing bullet-shaped magnetic particles. FEMS Microbiol Lett 115:169–176

    Article  Google Scholar 

  • Towe KM, Moench TT (1981) Electron-optical characterization of bacterial magnetite. Earth Planet Sci Lett 52:213–220

    Article  CAS  Google Scholar 

  • Uebe R, Voigt B, Schweder T, Albrecht D, Katzmann E, Lang C, Böttger L, Matzanke B, Schüler D (2010) Deletion of a fur-like gene affects iron homeostasis and magnetosome formation in Magnetospirillum gryphiswaldense. J Bacteriol 192:4192–4204

    Article  PubMed  CAS  Google Scholar 

  • Uebe R, Henn V, Schüler D (2012) The MagA protein of magnetospirilla is not involved in bacterial magnetite biomineralization. J Bacteriol 194:1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Ullrich S, Schüler D (2010) Cre-lox-based method for generation of large deletions within the genomic magnetosome island of Magnetospirillum gryphiswaldense. Appl Environ Microbiol 76:2439–2444

    Article  PubMed  CAS  Google Scholar 

  • Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D (2005) A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 187:7176–7184

    Article  PubMed  CAS  Google Scholar 

  • Vali H, Kirschvink JL (1989) Magnetofossil dissolution in a palaeomagnetically unstable deep‐sea sediment. Nature 339:203–206

    Article  Google Scholar 

  • Vali H, Forster O, Amarantidis G, Petersen N (1987) Magnetotactic bacteria and their magnetofossils in sediments. Earth Planet Sci Lett 86:389–400

    Article  Google Scholar 

  • Verosub KL, Roberts AP (1995) Environmental magnetism: past, present, and future. J Geophys Res 100:2175–2192

    Article  Google Scholar 

  • Weiss BP, Kim SS, Kirschvink JL, Kopp RE, Sankaran M, Kobayashi A, Komeili A (2004) Magnetic tests magnetosome chains in Martian meteorite ALH84001. Proc Natl Acad Sci USA 101:8281–8284

    Article  PubMed  CAS  Google Scholar 

  • Wenter R, Wanner G, Schüler D, Overmann J (2009) Ultrastructure, tactic behaviour and potential for sulfate reduction of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ Microbiol 11:1493–1505

    Article  PubMed  Google Scholar 

  • Williams TJ, Zhang CL, Scott JH, Bazylinski DA (2006) Evidence for autotrophy via the reverse tricarboxylic acid cycle in the marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 72:1322–1329

    Article  PubMed  CAS  Google Scholar 

  • Williams TJ, Lefèvre CT, Zhao W, Beveridge TJ, Bazylinski DA (2012) Magnetospira thiophila, gen. nov. sp. nov., a new marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int J Syst Evol Microbiol 62:2443–2450

    Google Scholar 

  • Winklhofer M, Abraçado LG, Davila AF, Keim CN, Lins de Barros HGP (2007) Magnetic optimization in a multicellular magnetotactic organism. Biophys J 92:661–670

    Article  PubMed  CAS  Google Scholar 

  • Wolfe RS, Thauer RK, Pfennig N (1987) A capillary racetrack method for isolation of magnetotactic bacteria. FEMS Microbiol Lett 45:31–35

    Article  Google Scholar 

  • Xiang L, Wei J, Jianbo S, Guili W, Feng G, Ying L (2007) Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol 45:75–81

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Chen K, Chen X (2009) Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Res 2:261–278

    Article  PubMed  CAS  Google Scholar 

  • Yang CD, Takeyama H, Tanaka T, Hasegawa A, Matsunaga T (2001a) Synthesis of bacterial magnetic particles during cell cycle of Magnetospirillum magneticum AMB-1. Appl Biochem Biotechnol 91–93:155–160

    Article  PubMed  Google Scholar 

  • Yang C, Takeyama H, Tanaka T, Matsunaga T (2001b) Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme Microb Technol 29:13–19

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Li R, Peng T, Zhang Y, Jiang W, Li Y, Li J (2010) mamO and mamE genes are essential for magnetosome crystal biomineralization in Magnetospirillum gryphiswaldense MSR-1. Res Microbiol 161:701–705

    Article  PubMed  CAS  Google Scholar 

  • Yoshino T, Matsunaga T (2005) Development of efficient expression system for protein display on bacterial magnetic particles. Biochem Biophys Res Commun 338:1678–1681

    Article  PubMed  CAS  Google Scholar 

  • Yoshino T, Matsunaga T (2006) Efficient and stable display of functional proteins on bacterial magnetic particles using Mms13 as a novel anchor molecule. Appl Environ Microbiol 72:465–471

    Article  PubMed  CAS  Google Scholar 

  • Yoshino T, Tanaka T, Takeyama H, Matsunaga T (2003) Single nucleotide polymorphism genotyping of aldehyde dehydrogenase 2 gene using a single bacterial magnetic particle. Biosens Bioelectron 18:661–666

    Article  PubMed  CAS  Google Scholar 

  • Yoza B, Matsumoto M, Matsunaga T (2002) DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol 94:217–224

    Article  PubMed  CAS  Google Scholar 

  • Yoza B, Arakaki A, Maruyama K, Takeyama H, Matsunaga T (2003a) Fully automated DNA extraction from blood using magnetic particles modified with a hyperbranched polyamidoamine dendrimer. J Biosci Bioeng 95:21–26

    PubMed  CAS  Google Scholar 

  • Yoza B, Arakaki A, Matsunaga T (2003b) DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J Biotechnol 101:219–228

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Wu D, Wu L-F, Song T (2007) A simple and accurate method for quantification of magnetosomes in magnetotactic bacteria by common spectrophotometer. J Biochem Biophys Methods 70:377–383

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Lliang C, Li A, Chang J, Wang H, Yan R, Zhang J, Tai J (2010) Magnetic paclitaxel nanoparticles inhibit glioma growth and improve the survival of rats bearing glioma xenografts. Anticancer Res 30:2217–2223

    PubMed  CAS  Google Scholar 

  • Zhou K, Pan H, Zhang S, Yue H, Xiao T, Wu L (2011) Occurrence and microscopic analysis of multicellular magnetotactic prokaryotes from coastal sediments in the Yellow Sea. Chin J Oceanol Limn 29:246–251

    Article  CAS  Google Scholar 

  • Zhou K, Zhang WY, Yu-Zhang K, Pan HM, Zhang SD, Zhang WJ, Yue HD, Li Y, Xiao T, Wu LF (2012) A novel genus of multicellular magnetotactic prokaryotes from the Yellow Sea. Environ Microbiol 14:405–413

    Article  PubMed  CAS  Google Scholar 

  • Zhu K, Pan H, Li J, Yu-Zhang K, Zhang SD, Zhang WY, Zhou K, Yue H, Pan Y, Xiao T, Wu LF (2010) Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol 161:276–283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the continued collaboration, support, and encouragement of R. B. Frankel. DAB is supported by US National Science Foundation (NSF) Grant EAR-0920718. CTL is supported by a grant from the Fondation pour la Recherche Médicale SPF20101220993. DS has been supported by grants from the Deutsche Forschungsgemeinschaft, the German Bundesministerium für Bildung und Forschung, and the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis A. Bazylinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bazylinski, D.A., Lefèvre, C.T., Schüler, D. (2013). Magnetotactic Bacteria. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_74

Download citation

Publish with us

Policies and ethics