Skip to main content
Log in

Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A recently isolated strain of Beggiatoa, MS-81-6 (cf. alba), was tested for chemoautotrophic growth in semi-solid (0.2% agar) sulfide/oxygen gradient cultures. The organism grew in a horizontal layer, the distance from the air/medium interface depending on sulfide concentrations and changing with time. Optimal growth as a gradient organism was based on a preference for reduced oxygen concentrations and a limited sulfide tolerance in combination with gliding motility. In gradient cultures chemoautotrophic growth was demonstrated by the following criteria: (1) biomass yield (protein) increased with increasing sulfide concentration, and estimated molar growth yields agreed with those for other sulfide-grown chemoautotrophs; (2) approximately 90% of total cell carbon and protein carbon were fixed from carbon dioxide; (3) the CO2-fixing enzyme, ribulosebisphosphate carboxylase, was present in cell-free extracts at a level typical of chemoautotrophs; (4) acidification of the medium, apparently linked to utilization of internal So granules, accompanied the later phase of growth. The ability to grow on acetate in the absence of a source of reduced sulfur renders the organism facultatively chemoautotrophic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RuBP:

d-Ribulose-1,5-bisphosphate

RuBP-carboxylase:

d-Ribulose-1,5-bisphosphate carboxylase (E.C. 4.1.1.39)

So :

elemental sulfur

TCA:

trichloroacetic acid

References

  • Bavendamm W (1924) Die farblosen und roten Schwefelbakterien des Süß- und Salzwassers. Gustav Fischer, Jena

    Google Scholar 

  • Beudeker RF, Cannon GC, Kuenen JC, Shively JM (1980) Relations between d-ribulose-1,5-bisphosphate carboxylase, carboxysomes and CO2-fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 124:185–189

    Google Scholar 

  • Brock TD, Brock ML, Bott TL, Edwards MR (1971) Microbial life at 90°C: the sulfur bacteria of Boulder Spring. J Bacteriol 107:303–314

    Google Scholar 

  • Burton SD, Morita RY (1964) Effect of catalase and cultural conditions on growth of Beggiatoa. J Bacteriol 88:1755–1761

    Google Scholar 

  • Cuhel RL, Taylor CD, Jannasch HW (1981) Assimilatory sulfur metabolism in marine microorganisms: sulfur metabolism, protein synthesis, and growth of Pseudomonas halodurans and Alteromonas luteo-violaceus during unperturbed batch growth. Arch Microbiol 130:8–13

    Google Scholar 

  • Doolittle RF (1981) Similar amino acid sequences: chance or common ancestry? Science 214:149–159

    Google Scholar 

  • Faust L, Wolfe RS (1961) Enrichment and cultivation of Beggiatoa alba. J Bacteriol 81:99–106

    Google Scholar 

  • Goldman JC (1979) Bioengineering aspects of inorganic carbon supply to mass algal cultures. In: Third Ann. Biomass Conf. Energy Biomass, Golden Colorado, SERI/TP-33-285, U.S. Dept Energy, pp 25–32

  • Güde H, Strohl WR, Larkin JM (1981) Mixotrophic and heterotrophic growth of Beggiatoa alba in continuous culture. Arch Microbiol 129:357–360

    Google Scholar 

  • Jørgensen BB, Revsbech NP (1983) Colorless sulfur bacteria. Beggiatoa sp and Thiovulum sp. in O2 and H2S microgradients. Appl Environ Microbiol, 45:1261–1270

    Google Scholar 

  • Jukes TH, Homquist R, Moise H (1975) Amino acid composition of proteins: selection against the genetic code. Science 189:50–51

    Google Scholar 

  • Keil F (1912) Beitrage zur Physiologie der farblosen Schwefelbakterien. Beitr Biol Pflanz 11:335–372

    Google Scholar 

  • Kelly DP (1971) Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Ann Rev Microbiol 25:177–204

    Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Phil Trans R Soc Lond B 298:499–528

    Google Scholar 

  • Konopka A, Schnur M (1980) Effect of light intensity on macromolecular synthesis in cyanobacteria. Microb Ecol 6:291–301

    Google Scholar 

  • Kowallik U, Pringsheim EG (1966) The oxidation of hydrogen sulfide by Beggiatoa. Am J Bot 53:801–806

    Google Scholar 

  • Kuenen JG, Beudeker RF (1982) Microbiology of thiobacilli and other sulphur oxidizing autotrophs, mixotrophs and heterotrophs. Phil Trans R Soc Lond B 298:473–497

    Google Scholar 

  • Kuenen JG, Veldkamp H (1973) Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila and Thiobacillus neapolitanus. Arch Mikrobiol 94:173–190

    Google Scholar 

  • Luria SE (1960) The bacterial protoplasm: composition and organization. In: Gunsalus IC, Stanier RY (eds) The bacteria, vol I. Academic Press, New York London, pp 1–34

    Google Scholar 

  • Matin A (1978) Organic nutrition of chemolithotrophic bacteria. Ann Rev Microbiol 32:433–468

    Google Scholar 

  • Nelson DC, Castenholz RW (1981a) The use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol 147:140–154

    Google Scholar 

  • Nelson DC, Castenholz RW (1981b) The organic nutrition of Beggiatoa sp. J Bacteriol 147:236–247

    Google Scholar 

  • Nelson DC, Waterbury JB, Jannasch HW (1982) Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch Microbiol 133:172–177

    Google Scholar 

  • Pfennig N, Biebl H (1981) The dissimilatory sulfur-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol 1. Springer, Berlin Heidelberg New York, pp 941–947

    Google Scholar 

  • Pringsheim EG (1967) Die Mixotrophie von Beggiatoa. Arch Mikrobiol 59:247–254

    Google Scholar 

  • Pringsheim EG (1970) Contributions toward the development of general microbiology. Ann Rev Microbiol 24:1–16

    Google Scholar 

  • Rittenberg SC (1972) The obligate autotroph — the demise of a concept. Antonie van Leeuwenhoek J Microbiol Serol 38:457–478

    Google Scholar 

  • Ruby EG, Jannasch HW (1982) Physiological characteristics of Thiomicrospira sp strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165

    Google Scholar 

  • Schlegel HG (1975) Mechanisms of chemoautotrophy. In: O Kinne (ed) Marine Ecology, vol 2, pt 1. Wiley, London New York Sydney Toronto, pp 9–60

    Google Scholar 

  • Scotten HL, Stokes JL (1962) Isolation and properties of Beggiatoa. Arch Mikrobiol 42:353–368

    Google Scholar 

  • Sörbo B (1957) A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta 23:416–421

    Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry. Freeman, San Francisco

    Google Scholar 

  • Strohl WR, Larkin JM (1978) Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments. Appl Environ Microbiol 36:755–770

    Google Scholar 

  • Strohl WR, Cannon GC, Shively JM, Güde H, Hook LA, Lane CM, Larkin JM (1981) Heterotrophic carbon metabolism by Geggiatoa alba. J Bacteriol 148:572–583

    Google Scholar 

  • Taylor BF, Hoare DS (1971) Thiobacillus denitrificans as an obligate chemolithotroph. II. Cell suspensions and enzymatic studies. Arch Mikrobiol 80:262–276

    Google Scholar 

  • Tuttle JH, Jannasch HW (1979) Microbial dark assimilation of CO2 in the Cariaco Trench. Limnol Oceanogr 24:746–753

    Google Scholar 

  • Vollenweider RA (1969) A manual on methods for measuring primary production in aquatic environments. Davis, Philadelphia

    Google Scholar 

  • Whittenbury R, Kelly DP (1977) Autotrophy: a conceptual phoenix. Symp Soc Gen Microbiol 27:121–149

    Google Scholar 

  • Winogradsky S (1887) Über Schwefelbakterien. Bot Ztg 45:489–507, 513–523, 529–539, 545–559, 569–576, 585–594, 606–610

    Google Scholar 

  • Winogradsky S (1890) Sur les organismes de la nitrification. Annls Inst Pasteur 4:213–231, 257–275, 760–771

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, D.C., Jannasch, H.W. Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch. Microbiol. 136, 262–269 (1983). https://doi.org/10.1007/BF00425214

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425214

Key words

Navigation