Skip to main content
Log in

New developments in the understanding of the cation diffusion facilitator family

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

Cation diffusion facilitator (CDF) proteins are a phylogenetically ubiquitous family of intermembrane transporters generally believed to play a role in the homeostasis of a wide range divalent metal cations. CDFs are found in a host of membranes, including the bacterial cell membrane, the vacuolar membrane of both plants and yeast, and the golgi apparatus of animals. As such, they are potentially useful in the engineering of hyperaccumulative phytoremediation systems. While not yet sufficient for reliable biotechnological manipulation, characterization of this family is proceeding briskly. Experimental data suggests that CDFs are generally homodimers that use proton antiport to drive substrate translocation across a membrane. This translocation of both substrate and protons is likely mediated by a combination of histidines, aspartates, and glutamates. Functional data has suggested that CDFs are not limited to metal homeostasis roles, as some appear to be determinants in the operation of high-volume metal resistance systems, and others may facilitate cation-donation as a means of signal transduction. This review seeks to give an overview of the data prompting these conclusions, while presenting additional data whose interpretation is still contentious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abramson J, Iwata S, Kaback HR (2004) Lactose permease as a paradigm for membrane transport proteins (Review). Mol Membr Biol 21:227–236

    Article  CAS  PubMed  Google Scholar 

  2. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  CAS  PubMed  Google Scholar 

  3. Anton A, Grosse C, Reissmann J, Pribyl T, Nies DH (1999) CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J Bacteriol 181:6876–6881

    CAS  PubMed  Google Scholar 

  4. Anton A, Weltrowski A, Haney CJ, Franke S, Grass G, Rensing C, Nies DH (2004) Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. J Bacteriol 186:7499–7507

    Article  CAS  PubMed  Google Scholar 

  5. Banerjee S, Wei B, Bhattacharyya-Pakrasi M, Pakrasi HB, Smith TJ (2003) Structural determinants of metal specificity in the zinc transport protein ZnuA from Synechocystis 6803. J Mol Biol 333:1061–1069

    Article  CAS  PubMed  Google Scholar 

  6. Blaudez D, Kohler A, Martin F, Sanders D, Chalot M (2003) Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell 15:2911–2928

    Article  CAS  PubMed  Google Scholar 

  7. Bloß T, Clemens S, Nies DH (2002) Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 214:783–791

    Article  PubMed  Google Scholar 

  8. Bruinsma JJ, Jirakulaporn T, Muslin AJ, Kornfeld K (2002) Zinc ions and cation diffusion facilitator proteins regulate Ras-mediated signaling. Dev Cell 2:567–578

    Article  CAS  PubMed  Google Scholar 

  9. Chao Y, Fu D (2004a) Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J Biol Chem 279:12043–12050

    Article  CAS  PubMed  Google Scholar 

  10. Chao Y, Fu D (2004b) Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J Biol Chem 279:17173–17180

    Article  CAS  PubMed  Google Scholar 

  11. Conklin DS, McMaster JA, Culbertson MR, Kung C (1992) COT1, a gene involved in cobalt accumulation in Saccharomyces cerevisiae. Mol Cell Biol 12:3678–3688

    CAS  PubMed  Google Scholar 

  12. Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15:1131–1142

    Article  CAS  PubMed  Google Scholar 

  13. Eide DJ, Bridgham JT, Zhao Z, Mattoon JR (1993). The vacuolar H+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol Gen Genet 241:447–456

    Article  CAS  PubMed  Google Scholar 

  14. Eng BH, Guerinot ML, Eide D, Saier MH Jr (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Membr Biol 166:1–7

    Article  CAS  PubMed  Google Scholar 

  15. Fang CT, Chen HC, Chuang YP, Chang SC, Wang JT (2002) Cloning of a cation efflux pump gene associated with chlorhexidine resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 46:2024–2028

    Article  CAS  PubMed  Google Scholar 

  16. Goldberg M, Pribyl T, Juhnke S, Nies DH (1999) Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 274:26065–26070

    Article  CAS  PubMed  Google Scholar 

  17. Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D (2005) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol 183:9–18

    Article  CAS  PubMed  Google Scholar 

  18. Grunberg K, Wawer C, Tebo BM, Schuler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582

    Article  CAS  PubMed  Google Scholar 

  19. Guffanti AA, Wei Y, Rood SV, Krulwich TA (2002) An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol Microbiol 45:145–153

    Article  CAS  PubMed  Google Scholar 

  20. Hoyos B, Imam A, Korichneva I, Levi E, Chua R, Hammerling U (2002) Activation of c-Raf kinase by ultraviolet light. Regulation by retinoids. J Biol Chem 277:23949–23957

    Article  CAS  PubMed  Google Scholar 

  21. Huang L, Kirschke CP, Gitschier J (2002) Functional characterization of a novel mammalian zinc transporter, ZnT6. J Biol Chem 277:26389–26395

    Article  CAS  PubMed  Google Scholar 

  22. Jirakulaporn T, Muslin AJ (2004) Cation diffusion facilitator proteins modulate Raf-1 activity. J Biol Chem 279:27807–27815

    Article  CAS  PubMed  Google Scholar 

  23. Kambe T, Narita H, Yamaguchi-Iwai Y, Hirose J, Amano T, Sugiura N, Sasaki R, Mori K, Iwanaga T, Nagao M (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J Biol Chem 277:19049–19055

    Article  CAS  PubMed  Google Scholar 

  24. Lanyi JK (1997) Mechanism of ion transport across membranes. Bacteriorhodopsin as a prototype for proton pumps. J Biol Chem 272:31209–31212

    CAS  Google Scholar 

  25. Lee SM, Grass G, Haney CJ, Fan B, Rosen BP, Anton A, Nies DH, Rensing C (2002) Functional analysis of the Escherichia coli zinc transporter ZitB. FEMS Microbiol Lett 215:273–278

    Article  CAS  PubMed  Google Scholar 

  26. Legatzki A, Grass G, Anton A, Rensing C, Nies DH (2003) Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185:4354–4361

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Kaplan J (2001) The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. J Biol Chem 276:5036–5043

    Article  CAS  PubMed  Google Scholar 

  28. Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778

    CAS  PubMed  Google Scholar 

  29. Liuzzi JP, Blanchard RK, Cousins RJ (2001) Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr 131:46–52

    CAS  PubMed  Google Scholar 

  30. Lomovskaya O, Zgurskaya HI, Nikaido H (2002) It takes three to tango. Nat Biotechnol 20:1210–1212

    Article  CAS  PubMed  Google Scholar 

  31. MacDiarmid CW, Milanick MA, Eide DJ (2002) Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J Biol Chem 277:39187–39194

    Article  CAS  PubMed  Google Scholar 

  32. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    Google Scholar 

  33. Michalczyk A, Varigos G, Catto-Smith A, Blomeley RC, Ackland ML (2003) Analysis of zinc transporter, hZnT4 (Slc30A4), gene expression in a mammary gland disorder leading to reduced zinc secretion into milk. Hum Genet 113:202–210

    Article  CAS  PubMed  Google Scholar 

  34. Michaud NR, Fabian JR, Mathes KD, Morrison DK (1995) 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3-independent and Ras-independent manner. Mol Cell Biol 15:3390–3397

    CAS  PubMed  Google Scholar 

  35. Morrison DK, Cutler RE (1997) The complexity of Raf-1 regulation. Curr Opin Cell Biol 9:174–179

    Google Scholar 

  36. Munkelt D, Grass G, Nies DH (2004) The chromosomally encoded cation diffusion facilitator proteins DmeF and FieF from Wautersia metallidurans CH34 are transporters of broad metal specificity. J Bacteriol 186:8036–8043

    Article  CAS  PubMed  Google Scholar 

  37. Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587–593

    Article  CAS  PubMed  Google Scholar 

  38. Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712

    CAS  PubMed  Google Scholar 

  39. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  40. Nies D, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868

    CAS  PubMed  Google Scholar 

  41. Nies DH, Nies A, Chu L, Silver S (1989) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355

    CAS  PubMed  Google Scholar 

  42. Nikaido H, Basina M, Nguyen V, Rosenberg EY (1998) Multidrug efflux pump AcrAB of Salmonella typhimurium excretes only those beta-lactam antibiotics containing lipophilic side chains. J Bacteriol 180:4686–4692

    CAS  PubMed  Google Scholar 

  43. Nikaido H, Zgurskaya HI (2001) AcrAB and related multidrug efflux pumps of Escherichia coli. J Mol Microbiol Biotechnol 3:215–218

    CAS  PubMed  Google Scholar 

  44. Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    CAS  PubMed  Google Scholar 

  45. Palmer M (2003) Efflux of cytoplasmically acting antibiotics from gram-negative bacteria: periplasmic substrate capture by multicomponent efflux pumps inferred from their cooperative action with single-component transporters. J Bacteriol 185:5287–5289

    Article  CAS  PubMed  Google Scholar 

  46. Palmiter RD, Findley SD (1995) Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J 14:639–649

    CAS  PubMed  Google Scholar 

  47. Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    Google Scholar 

  48. Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995–10000

    Article  CAS  PubMed  Google Scholar 

  49. Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    CAS  Google Scholar 

  50. Pos KM, Diederichs K (2002) Purification, crystallization and preliminary diffraction studies of AcrB, an inner-membrane multi-drug efflux protein. Acta Crystallogr D Biol Crystallogr 58):1865–1867

    Article  PubMed  Google Scholar 

  51. Ramsay LM, Gadd GM (1997) Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiol Lett 152:293–298

    Google Scholar 

  52. Rensing C, Grass G (2003) Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213

    Article  CAS  PubMed  Google Scholar 

  53. Rensing C, Mitra B, Rosen BP (1997a) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94:14326–14331

    Google Scholar 

  54. Rensing C, Pribyl T, Nies DH (1997b) New functions for the three subunits of the CzcCBA cation-proton antiporter. J Bacteriol 179:6871–6879

    Google Scholar 

  55. Saier MH Jr, Tam R, Reizer A, Reizer J (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847

    CAS  PubMed  Google Scholar 

  56. Stein WD (1990) Channels, carriers and pumps: an introduction to membrane transport. Academic Press, San Diego, Calif.

    Google Scholar 

  57. Vaneechoutte M, Kampfer P, De Baere T, Falsen E, Verschraegen G (2004) Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 54:317–327

    Article  PubMed  Google Scholar 

  58. Vazquez-Ibar JL, Guan L, Weinglass AB, Verner G, Gordillo R, Kaback HR (2004) Sugar recognition by the lactose permease of Escherichia coli. J Biol Chem 279:49214–49221

    Article  CAS  PubMed  Google Scholar 

  59. Vik SB, Antonio BJ (1994) A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem 269:30364–30369

    CAS  PubMed  Google Scholar 

  60. Wei Y, Li H, Fu D (2004) Oligomeric state of the Escherichia coli metal transporter YiiP. J Biol Chem 279:39251–39259

    Article  CAS  PubMed  Google Scholar 

  61. Wiebe CA, Rieder C, Young PG, Dibrov P, Fliegel L (2003) Functional analysis of amino acids of the Na+/H+ exchanger that are important for proton translocation. Mol Cell Biochem 254:117–124

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dax Fu both for insightful discussion as well as for providing pre-publication data. Thanks are also due to Dietrich Nies and Wilfred Stein for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Rensing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haney, C.J., Grass, G., Franke, S. et al. New developments in the understanding of the cation diffusion facilitator family. J IND MICROBIOL BIOTECHNOL 32, 215–226 (2005). https://doi.org/10.1007/s10295-005-0224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-005-0224-3

Keywords

Navigation