Skip to main content

Biochemistry of the Anaerobic Degradation of Non-Methane Alkanes

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Alkanes (saturated hydrocarbons) are naturally wide-spread compounds that are chemically unreactive. Whereas aerobic alkane-utilizing microorganism have been investigated since the early 20th century, anaerobic alkane-degraders became known relatively recently. Several nitrate- or sulfate-reducing bacteria able to growth with alkanes as sole organic substrates have been described. Furthermore, anaerobic alkane degradation was demonstrated in enriched bacterial communities under conditions of nitrate reduction, sulfate reduction, or methanogenesis. This article presents an overview of the anaerobic metabolism of non-methane alkanes. The anaerobic activation of alkanes in the absence of oxygen presents a “metabolic challenge”. Metabolite analyses suggest that many anaerobic alkane degraders make use of a radical-catalyzed carbon-carbon addition to fumarate yielding alkylsuccinates; usually, the subterminal carbon atom of the alkane is activated, resulting in (1-methylalkyl)-succinates. Isotope labeling studies suggest a further metabolism of (1-methylalkyl)succinyl-CoA via carbon skeleton rearrangement and decarboxylation yielding 4-methyl-branched fatty acid thioesters; the latter can undergo β-oxidation. The pathway involves a delicate stereochemistry. Furthermore, there are hints at an alternative, still unexplored pathway for anaerobic alkane degradation with the introduction of a carbon dioxide-derived carboxyl group at carbon-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156: 5–14.

    Article  CAS  Google Scholar 

  • Aeckersberg F, Rainey FA, Widdel F (1998) Growth, natural relationships, cell fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170: 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Anderson RT, Lovley DR (2000) Hexadecane decay by methanogenesis. Nature 404: 722–723.

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Fritz-Wolf K, Kabsch W, Knappe J, Schultz S, Volker Wagner AF (1999) Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat Struct Biol 6: 969–975.

    Article  PubMed  CAS  Google Scholar 

  • Beller HR, Spormann AM (1997) Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J Bacteriol 179: 670–676.

    PubMed  CAS  Google Scholar 

  • Beller HR, Spormann AM (1998) Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. J Bacteriol 180: 5454–5457.

    PubMed  CAS  Google Scholar 

  • Biegert T, Fuchs G, Heider J. (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238: 661–668.

    Article  PubMed  CAS  Google Scholar 

  • Bregnard TP, Haner A, Hohener P, Zeyer J (1997) Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures. Appl Environ Microbiol 63: 2077–2081.

    PubMed  CAS  Google Scholar 

  • Buckel W, Golding BT (2006) Radical enzymes in anaerobes. Annu Rev Microbiol 60: 27–49.

    Article  PubMed  CAS  Google Scholar 

  • Callaghan AV, Gieg LM, Kropp KG, Suflita JM, Young LY (2006) Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacteria isolates and a bacterial consortium. Appl Environ Microbiol 72: 4274–4282.

    Article  PubMed  CAS  Google Scholar 

  • Callaghan AV, Wawrik B, Ní Chadhain SM, Young LY, Zylstra GJ (2008) Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. Biochem Biophys Res Commun 366: 142–148.

    Article  PubMed  CAS  Google Scholar 

  • Callaghan AV, Tierney M, Phelps CD, Young LY (2009) Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium. Appl Environ Microbiol, doi:10.1128/AEM.02491-08.

    Google Scholar 

  • Coschigano PW, Wehrman TS, Young LY (1998) Identification and analysis of genes involved in anaerobic toluene metabolism by strain T1: putative role of a glycine free radical. Appl Environ Microbiol 64: 1650–1656.

    PubMed  CAS  Google Scholar 

  • Cravo-Laureau C, Matheron R, Cayol J-L, Joulian C, Hirschler-Rea A (2004) Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulphate-reducing bacterium. Int J Syst Evol Microbiol 54: 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Cravo-Laureau C, Grossi V, Raphel D, Matheron R, Hirschler-Rea A (2005) Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T. Appl Environ Microbiol 71: 3458–3467.

    Article  PubMed  CAS  Google Scholar 

  • Davidova IA, Suflita JM (2005) Enrichment and isolation of anaerobic hydrocarbon-degrading bacteria. In: Methods in enzymology, vol 397. JR (ed.). Leadbetter Amsterdam: Elsevier, pp 17–34.

    Google Scholar 

  • Davidova IA, Gieg LM, Nanny M, Kropp KG, Suflita JM (2005) Stable isotope studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 71: 8174–8182.

    Article  PubMed  CAS  Google Scholar 

  • Eastcott L, Shiu WY, Mackay D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and developments of simple correlations. Oil Chem Pollut 4: 191–216.

    Article  CAS  Google Scholar 

  • Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173: 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Frey PA, Hegeman AD, Ruzicka FJ (2008) The radical SAM superfamily. Crit Rev Biochem Mol Biol 43, 63–88.

    Article  PubMed  CAS  Google Scholar 

  • Gieg LM, Suflita JM (2002) Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol 36: 3755–3762.

    Article  PubMed  CAS  Google Scholar 

  • Grundmann O, Behrends A, Rabus R, Amann J, Halder T, Heider J, Widdel F (2008) Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. Environ Microbiol 10: 376–385.

    Article  PubMed  CAS  Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BF, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451: 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Jordan A, Reichard P (1998) Ribonucleotide reductases. Annu Rev Biochem 67: 71–98.

    Article  PubMed  CAS  Google Scholar 

  • Kloer DP, Hagel C, Heider J, Schulz GE (2006) Crystal structure of ethylbenzene dehydrogenase from Aromatoleum aromaticum. Structure 14: 1377–1388.

    Article  PubMed  CAS  Google Scholar 

  • Knappe J, Neugebauer FA, Blaschkowski HP, Gänzler M (1984) Post-translational activation introduces a free radical into pyruvate formate-lyase. Proc Natl Acad Sci USA 81: 1332–1335.

    Article  PubMed  CAS  Google Scholar 

  • Kniemeyer O, Fischer T, Wilkes H, Glöckner FO, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69: 760–768.

    Article  PubMed  CAS  Google Scholar 

  • Kniemeyer O, Musat F, Sievert S, Knittel K, Wilkes H, Blumenberg M, Michaelis W, Classen A, Bolm C, Joye S, Widdel F (2007) Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature 449: 898–901.

    Article  PubMed  CAS  Google Scholar 

  • Krieger CJ, Roseboom W, Albracht SP, Spormann AM (2001) A stable organic free radical in anaerobic benzylsuccinate synthase of Azoarcus sp. strain T. J Biol Chem 276: 12924–12927.

    PubMed  CAS  Google Scholar 

  • Kropp KG, Davidova IA, Suflita JM (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66: 5393–5398.

    Article  PubMed  CAS  Google Scholar 

  • Kühner S, Wöhlbrand L, Fritz I, Wruck W, Hultschig C, Hufnagel P, Kube M, Reinhardt R, Rabus R (2005) Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J Bacteriol 187: 1493–1503.

    Article  PubMed  Google Scholar 

  • Leuthner B, Leutwein C, Schulz H, Hörth P, Haehnel W, Schiltz E, Schägger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28: 615–628.

    Article  PubMed  CAS  Google Scholar 

  • Leutwein C, Heider J (1999) Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and beta-oxidation of the first intermediate, (R)-(+)-benzylsuccinate. Microbiology 145: 3265–3271.

    PubMed  CAS  Google Scholar 

  • Möller D, Schauder R, Fuchs G, Thauer RK (1987) Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol 148: 202–207.

    Article  Google Scholar 

  • Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11: 209–219.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JR, Raynaud C, Croux C, Girbal L, Soucaille P, Lanzilotta WN (2004) Insight into the mechanism of the B12-independent glycerol dehydratase from Clostridium butyricum: preliminary biochemical and structural characterization. Biochemistry 43: 4635–4645.

    Article  PubMed  Google Scholar 

  • Qiao C, Marsh ENG (2005) Mechanism of benzylsuccinate synthase: stereochemistry of toluene addition to fumarate and maleate. J Am Chem Soc 127: 8608–8609.

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in the metabolism of n-hexane in a denitrifying bacterium. J Bacteriol 183: 1707–1715.

    Article  PubMed  CAS  Google Scholar 

  • Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Sakakura T, Tanaka M (1987) Efficient catalytic C−H activation of alkanes: regioselective carbonylation of the terminal methyl group of pentane by RhCl(CO)(PMe3)2. J Chem Soc Chem Commun (no volume number): 758-759.

    Google Scholar 

  • Sawers G, Hesslinger C, Muller N, Kaiser M (1998) The glycyl radical enzyme TdcE can replace pyruvate formate-lyase in glucose fermentation. J Bacteriol 180: 3509–3516.

    PubMed  CAS  Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145: 162–172.

    Article  CAS  Google Scholar 

  • Selmer T, Andrei PI (2001) p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem 268: 1363–1372.

    Article  PubMed  CAS  Google Scholar 

  • Shinoda Y, Akagi J, Uchihashi Y, Hiraishi A, Yukawa H, Yurimoto H, Sakai Y, Kato N (2005) Anaerobic degradation of aromatic compounds by Magnetospirillum strains: isolation and degradation genes. Biosci Biotechnol Biochem 69: 1483–1491.

    Article  PubMed  CAS  Google Scholar 

  • So CM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65: 2969–2976.

    PubMed  CAS  Google Scholar 

  • So CM, Phelps CD, Young LY (2003) Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol 69: 3892–3900.

    Article  PubMed  CAS  Google Scholar 

  • Townsend GT, Prince RC, Suflita JM (2004) Anaerobic biodegradation of alicyclic constituents of gasoline and natural gas condensate by bacteria from an anoxic aquifer. FEMS Microbiol Ecol 49: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Verfürth K, Pierik AJ, Leutwein C, Zorn S, Heider J (2004) Substrate specificities and electron paramagnetic resonance properties of benzylsuccinate synthases in anaerobic toluene and m-xylene metabolism. Arch Microbiol 181: 155–162.

    Article  PubMed  Google Scholar 

  • Wagner AF, Frey M, Neugebauer FA, Schäfer W, Knappe J (1992) The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci USA 89: 996–1000.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77: 219–262.

    Article  CAS  Google Scholar 

  • Wilkes H, Kühner S, Bolm C, Fischer T, Classen A, Widdel F, Rabus R (2003) Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Organ Geochem 34: 1313–1323.

    Article  CAS  Google Scholar 

  • Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement. Arch Microbiol 177: 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Zengler K, Richnow HH, Roselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266–269.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Widdel, F., Grundmann, O. (2010). Biochemistry of the Anaerobic Degradation of Non-Methane Alkanes. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_64

Download citation

Publish with us

Policies and ethics