Skip to main content

Cell Engineering with Synthetic Messenger RNA

  • Protocol
  • First Online:
Synthetic Messenger RNA and Cell Metabolism Modulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 969))

Abstract

mRNA has become an important alternative to DNA as a tool for cell reprogramming. To be expressed, exogenous DNA must be transmitted through the cell cytoplasm and placed into the nucleus. In contrast, exogenous mRNA simply has to be delivered into the cytoplasm. This can result in a highly uniform transfection of the whole population of cells, an advantage that has not been observed with DNA transfer. The use of mRNA, instead of DNA, in medical applications increases protocol safety by abolishing the risk of transgene insertion into host genomes. In this chapter, we review the aspects of mRNA structure and function that are important for its “transgenic” behavior, such as the composition of mRNA molecules and complexes with RNA binding proteins, localization of mRNA in cytoplasmic compartments, translation, and the duration of mRNA expression. In immunotherapy, mRNA is employed in reprogramming of antigen presenting cells (vaccination) and cytolytic lymphocytes. Other applications include generation of induced pluripotent stem (iPS) cells, and genome engineering with modularly assembled nucleases. The most investigated applications of mRNA technology are also reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noguchi H, Matsushita M, Kobayashi N, Levy MF, Matsumoto S (2010) Recent advances in protein transduction technology. Cell Transplant 19(6):649–654

    Article  PubMed  Google Scholar 

  2. Grdisa M (2011) The delivery of biologically active (therapeutic) peptides and proteins into cells. Curr Med Chem 18(9):1373–1379

    Article  PubMed  CAS  Google Scholar 

  3. Van Tendeloo VF, Ponsaerts P, Lardon F, Nijs G, Lenjou M, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98(1):49–56

    Article  PubMed  Google Scholar 

  4. Saeboe-Larssen S, Fossberg E, Gaudernack G (2002) mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods 259(1–2):191–203

    Article  PubMed  CAS  Google Scholar 

  5. Rabinovich PM, Komarovskaya ME, Ye Z-J, Imai C, Campana D, Bahceci E, Weissman SM (2006) Synthetic messenger RNA as a tool for gene therapy. Hum Gene Ther 17(10):1027–1035

    Article  PubMed  CAS  Google Scholar 

  6. Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J (2011) mRNA as gene therapeutic: how to control protein expression. J Control Release 150(3):238–247

    Article  PubMed  CAS  Google Scholar 

  7. Yamamoto A, Kormann M, Rosenecker J, Rudolph C (2009) Current prospects for mRNA gene delivery. Eur J Pharm Biopharm 71(3):484–489

    Article  PubMed  CAS  Google Scholar 

  8. Schott JW, Galla M, Godinho T, Baum C, Schambach A (2011) Viral and non-viral approaches for transient delivery of mRNA and proteins. Curr Gene Ther 11(5):382–398

    Article  PubMed  CAS  Google Scholar 

  9. Van Tendeloo VFI, Ponsaerts P, Berneman ZN (2007) mRNA-based gene transfer as a tool for gene and cell therapy. Curr Opin Mol Ther 9(5):423–431

    PubMed  Google Scholar 

  10. Pascolo S (2008) Vaccination with messenger RNA. Handb Exp Pharmacol 183:221–235

    Article  PubMed  CAS  Google Scholar 

  11. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127

    Article  PubMed  CAS  Google Scholar 

  12. Jackson RJ, Hellen CU, Pestova TV (2012) Termination and post-termination events in eukaryotic translation. Adv Protein Chem Struct Biol 86:45–93

    Article  PubMed  CAS  Google Scholar 

  13. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745

    Article  PubMed  CAS  Google Scholar 

  14. Boczkowski D, Nair S (2010) RNA as performance-enhancers for dendritic cells. Expert Opin Biol Ther 10(4):563–574

    Article  PubMed  CAS  Google Scholar 

  15. Dikstein R (2012) Transcription and translation in a package deal: the TISU paradigm. Gene 491(1):1–4

    Article  PubMed  CAS  Google Scholar 

  16. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  PubMed  CAS  Google Scholar 

  17. Cheneval D, Kastelic T, Fuerst P, Parker CN (2010) A review of methods to monitor the modulation of mRNA stability: a novel approach to drug discovery and therapeutic intervention. J Biomol Screen 15(6):609–622. doi:10.1177/1087057110365897

    Article  PubMed  CAS  Google Scholar 

  18. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582(14):1977–1986

    Article  PubMed  CAS  Google Scholar 

  19. Idler RK, Yan W (2012) Control of messenger RNA fate by RNA binding proteins: an emphasis on mammalian spermatogenesis. J Androl 33(3):309–337

    Article  PubMed  CAS  Google Scholar 

  20. Macdonald PM (2011) mRNA localization: assembly of transport complexes and their incorporation into particles. Curr Opin Genet Dev 21(4):407–413

    Article  PubMed  CAS  Google Scholar 

  21. Palazzo AF, Akef A (2012) Nuclear export as a key arbiter of “mRNA identity” in eukaryotes. Biochim Biophys Acta 1819(6):566–577

    Article  PubMed  CAS  Google Scholar 

  22. Nojima T, Hirose T, Kimura H, Hagiwara M (2007) The interaction between cap-binding complex and RNA export factor is required for intronless mRNA export. J Biol Chem 282(21):15645–15651

    Article  PubMed  CAS  Google Scholar 

  23. Maquat LE, Tarn WY, Isken O (2010) The pioneer round of translation: features and functions. Cell 142(3):368–374

    Article  PubMed  CAS  Google Scholar 

  24. Apcher S, Manoury B, Fahraeus R (2012) The role of mRNA translation in direct MHC class I antigen presentation. Curr Opin Immunol 24(1):71–76

    Article  PubMed  CAS  Google Scholar 

  25. Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10(6):430–436. doi:10.1038/nrm2694

    Article  PubMed  CAS  Google Scholar 

  26. Gingold H, Pilpel Y (2011) Determinants of translation efficiency and accuracy. Mol Syst Biol 7:481

    Article  PubMed  Google Scholar 

  27. Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM, Nussinov R (2008) Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. J Mol Biol 383(2):281–291

    Article  PubMed  CAS  Google Scholar 

  28. Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40(2):228–237

    Article  PubMed  CAS  Google Scholar 

  29. Steitz JA, Vasudevan S (2009) miRNPs: versatile regulators of gene expression in vertebrate cells. Biochem Soc Trans 37(Pt 5):931–935. doi:10.1042/BST0370931

    Article  PubMed  CAS  Google Scholar 

  30. Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 28(4):182–188

    Article  PubMed  CAS  Google Scholar 

  31. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934

    Article  PubMed  CAS  Google Scholar 

  32. Lee EK, Gorospe M (2011) Coding region: the neglected post-transcriptional code. RNA Biol 8(1):44–48

    Article  PubMed  CAS  Google Scholar 

  33. Schoenberg DR, Maquat LE (2009) Re-capping the message. Trends Biochem Sci 34(9):435–442

    Article  PubMed  CAS  Google Scholar 

  34. Sachs ABVG (2000) Eukaryotic translation initiation. Nat Struct Biol 7(5):356–361

    Article  PubMed  CAS  Google Scholar 

  35. Svitkin YV, Sonenberg N (2006) Translational control by the poly(A) binding protein: a check for mRNA integrity. Mol Biol 40(4):611–619

    Article  CAS  Google Scholar 

  36. Wang XQRJ (2004) 5 untranslated regions with multiple upstream AUG codons can support low-level translation via leaky scanning and reinitiation. Nucleic Acids Res 32(4):1382–1391

    Article  PubMed  CAS  Google Scholar 

  37. Leipuviene R, Theil EC (2007) The family of iron responsive RNA structures regulated by changes in cellular iron and oxygen. Cell Mol Life Sci 64(22):2945–2955

    Article  PubMed  CAS  Google Scholar 

  38. Hamilton TL, Stoneley M, Spriggs KA, Bushell M (2006) TOPs and their regulation. Biochem Soc Trans 34(1):12–16

    Article  PubMed  CAS  Google Scholar 

  39. Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    Article  PubMed  CAS  Google Scholar 

  40. Elfakess R, Sinvani H, Haimov O, Svitkin Y, Sonenberg N, Dikstein R (2011) Unique translation initiation of mRNAs-containing TISU element. Nucleic Acids Res 39(17):7598–7609

    Article  PubMed  CAS  Google Scholar 

  41. Kieft JS (2008) Viral IRES RNA structures and ribosome interactions. Trends Biochem Sci 33(6):274–283

    Article  PubMed  CAS  Google Scholar 

  42. Komar AA, Hatzoglou M (2011) Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 10(2):229–240

    Article  PubMed  CAS  Google Scholar 

  43. Gilbert WV (2010) Alternative ways to think about cellular internal ribosome entry. J Biol Chem 285(38):29033–29038

    Article  PubMed  CAS  Google Scholar 

  44. Thakor N, Holcik M (2012) IRES-mediated translation of cellular messenger RNA operates in eIF2alpha- independent manner during stress. Nucleic Acids Res 40(2):541–552

    Article  PubMed  CAS  Google Scholar 

  45. Bono F, Gehring NH (2011) Assembly, disassembly and recycling: the dynamics of exon junction complexes. RNA Biol 8(1):24–29

    Article  PubMed  CAS  Google Scholar 

  46. Maquat LE (2004) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5(2):89–99

    Article  PubMed  CAS  Google Scholar 

  47. Nott A, Le Hir H, Moore MJ (2004) Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 18(2):210–222

    Article  PubMed  CAS  Google Scholar 

  48. Kuersten S, Goodwin EB (2003) The power of the 3′ UTR: translational control and development. Nat Rev Genet 4(8):626–637

    Article  PubMed  CAS  Google Scholar 

  49. Arava Y (2009) Compaction of polyribosomal mRNA. RNA Biol 6(4):399–401

    Article  PubMed  CAS  Google Scholar 

  50. Mazumder B, Seshadri V, Fox PL (2003) Translational control by the 3′-UTR: the ends specify the means. Trends Biochem Sci 28(2):91–98

    Article  PubMed  CAS  Google Scholar 

  51. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent WJ, Miller W, Haussler D (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15(8):1034–1050

    Article  PubMed  CAS  Google Scholar 

  52. Mignone F, Gissi C, Liuni S, Pesole G (2002) Untranslated regions of mRNAs. Genome Biol 3 (3):REVIEWS0004

    Google Scholar 

  53. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379

    Article  PubMed  CAS  Google Scholar 

  54. Mercer TR, Wilhelm D, Dinger ME, Solda G, Korbie DJ, Glazov EA, Truong V, Schwenke M, Simons C, Matthaei KI, Saint R, Koopman P, Mattick JS (2011) Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res 39(6):2393–2403

    Article  PubMed  CAS  Google Scholar 

  55. Jeyapalan Z, Yang BB (2012) The non-coding 3′UTR of CD44 induces metastasis by regulating extracellular matrix functions. J Cell Sci

    Google Scholar 

  56. Kuhn U, Gundel M, Knoth A, Kerwitz Y, Rudel S, Wahle E (2009) Poly(A) tail length is controlled by the nuclear poly(A)-binding protein regulating the interaction between poly(A) polymerase and the cleavage and polyadenylation specificity factor. J Biol Chem 284(34):22803–22814

    Article  PubMed  CAS  Google Scholar 

  57. Gray NKCJ, Dickson KS, Wickens M (2000) Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J 19(17):4723–4733

    Article  PubMed  CAS  Google Scholar 

  58. Marzluff WF, Wagner EJ, Duronio RJ (2008) Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9(11):843–854

    Article  PubMed  CAS  Google Scholar 

  59. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136(4):719–730

    Article  PubMed  CAS  Google Scholar 

  60. Chabanon H, Nury D, Mickleburgh I, Burtle B, Hesketh J (2004) Characterization of the cis-acting element directing perinuclear localization of the metallothionein-1 mRNA. Biochem Soc Trans 32(Pt 5):702–704

    PubMed  CAS  Google Scholar 

  61. Andreassi C, Riccio A (2009) To localize or not to localize: mRNA fate is in 3′UTR ends. Trends Cell Biol 19(9):465–474

    Article  PubMed  CAS  Google Scholar 

  62. Thio GL, Ray RP, Barcelo G, Schupbach T (2000) Localization of gurken RNA in Drosophila oogenesis requires elements in the 5′ and 3′ regions of the transcript. Dev Biol 221(2):435–446

    Article  PubMed  CAS  Google Scholar 

  63. Chartrand P, Meng XH, Singer RH, Long RM (1999) Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Current biology 9(6):333–336

    Article  PubMed  CAS  Google Scholar 

  64. Hachet O, Ephrussi A (2004) Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428(6986):959–963

    Article  PubMed  CAS  Google Scholar 

  65. Shahbabian K, Chartrand P (2012) Control of cytoplasmic mRNA localization. Cell Mol Life Sci 69(4):535–552

    Article  PubMed  CAS  Google Scholar 

  66. Donnelly CJ, Fainzilber M, Twiss JL (2010) Subcellular communication through RNA transport and localized protein synthesis. Traffic 11(12):1498–1505

    Article  PubMed  CAS  Google Scholar 

  67. Besse F, Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9(12):971–980

    Article  PubMed  CAS  Google Scholar 

  68. Chen Q, Jagannathan S, Reid DW, Zheng T, Nicchitta CV (2011) Hierarchical regulation of mRNA partitioning between the cytoplasm and the endoplasmic reticulum of mammalian cells. Mol Biol Cell 22(14):2646–2658

    Article  PubMed  CAS  Google Scholar 

  69. Janda CY, Li J, Oubridge C, Hernandez H, Robinson CV, Nagai K (2010) Recognition of a signal peptide by the signal recognition particle. Nature 465(7297):507–510

    Article  PubMed  CAS  Google Scholar 

  70. Pyhtila B, Zheng T, Lager PJ, Keene JD, Reedy MC, Nicchitta CV (2008) Signal sequence- and translation-independent mRNA localization to the endoplasmic reticulum. RNA 14(3):445–453

    Article  PubMed  CAS  Google Scholar 

  71. Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36(6):932–941

    Article  PubMed  CAS  Google Scholar 

  72. Fawal M, Jean-Jean O, Vanzo N, Morello D (2011) Novel mRNA-containing cytoplasmic granules in ALK-transformed cells. Mol Biol Cell 22(6):726–735

    Article  PubMed  CAS  Google Scholar 

  73. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Article  PubMed  CAS  Google Scholar 

  74. Peixeiro I, Silva AL, Romao L (2011) Control of human beta-globin mRNA stability and its impact on beta-thalassemia phenotype. Haematologica 96(6):905–913

    Article  PubMed  CAS  Google Scholar 

  75. Balagopal V, Fluch L, Nissan T (2012) Ways and means of eukaryotic mRNA decay. Biochim Biophys Acta 1819(6):593–603

    Article  PubMed  CAS  Google Scholar 

  76. Ji X, Liebhaber SA (2007) mRNA stability and the control of gene expression

    Google Scholar 

  77. Wiederhold K, Passmore LA (2010) Cytoplasmic deadenylation: regulation of mRNA fate. Biochem Soc Trans 38(6):1531–1536

    Article  PubMed  CAS  Google Scholar 

  78. Amrani N, Ghosh S, Mangus DA, Jacobson A (2008) Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453(7199):1276–1280

    Article  PubMed  CAS  Google Scholar 

  79. Stalder L, Muhlemann O (2009) Processing bodies are not required for mammalian nonsense-mediated mRNA decay. RNA 15(7):1265–1273

    Article  PubMed  CAS  Google Scholar 

  80. Belasco JG (2010) All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat Rev Mol Cell Biol 11(7):467–478

    Article  PubMed  CAS  Google Scholar 

  81. Gong C, Maquat LE (2011) lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 470(7333):284–288

    Article  PubMed  CAS  Google Scholar 

  82. Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12(1):19–31

    Article  PubMed  CAS  Google Scholar 

  83. Sawicka K, Bushell M, Spriggs KA, Willis AE (2008) Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 36(Pt 4):641–647

    Article  PubMed  CAS  Google Scholar 

  84. Adeli K (2011) Translational control mechanisms in metabolic regulation: critical role of RNA binding proteins, microRNAs, and cytoplasmic RNA granules. Am J Physiol Endocrinol Metab 301(6):E1051–E1064

    Article  PubMed  CAS  Google Scholar 

  85. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914. doi:10.1016/j.molcel.2011.08.018

    Article  PubMed  CAS  Google Scholar 

  86. Tuck AC, Tollervey D (2011) RNA in pieces. Trends Genet 27(10):422–432

    Article  PubMed  CAS  Google Scholar 

  87. Grudzien-Nogalska E, Jemielity J, Kowalska J, Darzynkiewicz E, Rhoads RE (2007) Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 13(10):1745–1755

    Article  PubMed  CAS  Google Scholar 

  88. Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, Tureci O, Sahin U (2006) Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108(13):4009–4017

    Article  PubMed  CAS  Google Scholar 

  89. Hayashi T, Lamba DA, Slowik A, Reh TA, Bermingham-McDonogh O (2010) A method for stabilizing RNA for transfection that allows control of expression duration. Dev Dyn 239(7):2034–2040

    Article  PubMed  CAS  Google Scholar 

  90. Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11(2):121–127. doi:10.1038/nsmb724

    Article  PubMed  CAS  Google Scholar 

  91. Otsuka Y, Kedersha NL, Schoenberg DR (2009) Identification of a cytoplasmic complex that adds a cap onto 5′-monophosphate RNA. Mol Cell Biol 29(8):2155–2167

    Article  PubMed  CAS  Google Scholar 

  92. Novoa I, Gallego J, Ferreira PG, Mendez R (2010) Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat Cell Biol 12(5):447–456

    Article  PubMed  CAS  Google Scholar 

  93. Villalba A, Coll O, Gebauer F (2011) Cytoplasmic polyadenylation and translational control. Curr Opin Genet Dev 21(4):452–457

    Article  PubMed  CAS  Google Scholar 

  94. Shalem O, Dahan O, Levo M, Martinez MR, Furman I, Segal E, Pilpel Y (2008) Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol Syst Biol 4:223

    Article  PubMed  CAS  Google Scholar 

  95. Ma S, Bhattacharjee RB, Bag J (2009) Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. FEBS J 276(2):552–570

    Article  PubMed  CAS  Google Scholar 

  96. de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12(12):833–845

    PubMed  Google Scholar 

  97. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247(4949 Pt 1):1465–1468

    Article  PubMed  CAS  Google Scholar 

  98. Probst JWB, Scheel B, Pichler BJ, Hoerr I, Rammensee HG, Pascolo S (2007) Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther 14(15):1175–1180

    Article  PubMed  CAS  Google Scholar 

  99. Diken M, Kreiter S, Selmi A, Britten CM, Huber C, Tureci O, Sahin U (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18(7):702–708

    Article  PubMed  CAS  Google Scholar 

  100. Lorenz C, Fotin-Mleczek M, Roth G, Becker C, Dam TC, Verdurmen WP, Brock R, Probst J, Schlake T (2011) Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol 8(4):627–636

    Article  PubMed  CAS  Google Scholar 

  101. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, Homey B, Barrat FJ, Zal T, Gilliet M (2009) Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 206(9):1983–1994

    Article  PubMed  CAS  Google Scholar 

  102. Pascolo S (2011) Commenting on communicator RNA. Gene Ther 18(10):943–944

    Article  PubMed  CAS  Google Scholar 

  103. Mir LM (2009) Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future. Mol Biotechnol 43(2):167–176. doi:10.1007/s12033-009-9192-6

    Article  PubMed  CAS  Google Scholar 

  104. Faurie C, Rebersek M, Golzio M, Kanduser M, Escoffre JM, Pavlin M, Teissie J, Miklavcic D, Rols MP (2010) Electro-mediated gene transfer and expression are controlled by the life-time of DNA/membrane complex formation. J Gene Med 12(1):117–125. doi:10.1002/jgm.1414

    Article  PubMed  CAS  Google Scholar 

  105. Satkauskas S, Bureau MF, Puc M, Mahfoudi A, Scherman D, Miklavcic D, Mir LM (2002) Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol Ther 5(2):133–140. doi:10.1006/mthe.2002.0526

    Article  PubMed  CAS  Google Scholar 

  106. Geng T, Zhan Y, Wang J, Lu C (2011) Transfection of cells using flow-through electroporation based on constant voltage. Nat Protoc 6(8):1192–1208. doi:10.1038/nprot.2011.360

    Article  PubMed  CAS  Google Scholar 

  107. Kim JA, Cho K, Shin MS, Lee WG, Jung N, Chung C, Chang JK (2008) A novel electroporation method using a capillary and wire-type electrode. Biosens Bioelectron 23(9):1353–1360

    Article  PubMed  CAS  Google Scholar 

  108. Li L, Liu LN, Feller S, Allen C, Shivakumar R, Fratantoni J, Wolfraim LA, Fujisaki H, Campana D, Chopas N, Dzekunov S, Peshwa M (2010) Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method. Cancer Gene Ther 17(3):147–154

    Article  PubMed  CAS  Google Scholar 

  109. Choi Y, Yuen C, Maiti SN, Olivares S, Gibbons H, Huls H, Raphael R, Killian TC, Stark DJ, Lee DA, Torikai H, Monticello D, Kelly SS, Kebriaei P, Champlin RE, Biswal SL, Cooper LJ (2010) A high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells. Biomed Microdevices 12(5):855–863

    Article  PubMed  CAS  Google Scholar 

  110. Johnson BDGJ, Gershan J, Natalia N, Zujewski H, Weber JJ, Yan X, Orentas RJ (2005) Neuroblastoma cells transiently transfected to simultaneously express the co-stimulatory molecules CD54, CD80, CD86, and CD137L generate antitumor immunity in mice. J Immunother 28(5):449–460

    Article  PubMed  CAS  Google Scholar 

  111. Amaxa-Lonza (2012) Nucleofection technology. http://www.lonza.com/products-services/bio-research/transfection/nucleofector-technology.aspx

  112. Gresch O, Altrogge L (2012) Transfection of difficult-to-transfect primary mammalian cells. Methods Mol Biol 801:65–74

    Article  PubMed  CAS  Google Scholar 

  113. Su X, Fricke J, Kavanagh DG, Irvine DJ (2011) In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol Pharm 8(3):774–787

    Article  PubMed  CAS  Google Scholar 

  114. Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7(5):657–663

    Article  PubMed  CAS  Google Scholar 

  115. Troiber C, Wagner E (2011) Nucleic acid carriers based on precise polymer conjugates. Bioconjug Chem 22(9):1737–1752

    Article  PubMed  CAS  Google Scholar 

  116. Boe S, Saeboe-Larssen S, Hovig E (2010) Light-induced gene expression using messenger RNA molecules. Oligonucleotides 20(1):1–6

    Article  PubMed  CAS  Google Scholar 

  117. Perche F, Benvegnu T, Berchel M, Lebegue L, Pichon C, Jaffres P-A, Midoux P (2011) Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomedicine 7(4):445–453

    Article  PubMed  CAS  Google Scholar 

  118. Zou S, Scarfo K, Nantz MH, Hecker JG (2010) Lipid-mediated delivery of RNA is more efficient than delivery of DNA in non-dividing cells. Int J Pharm 389(1–2):232–243

    Article  PubMed  CAS  Google Scholar 

  119. Walch B, Breinig T, Schmitt MJ, Breinig F (2012) Delivery of functional DNA and messenger RNA to mammalian phagocytic cells by recombinant yeast. Gene Ther 19(3):237–245

    Article  PubMed  CAS  Google Scholar 

  120. Stiles KM, Kielian M (2011) Alphavirus entry: NRAMP leads the way. Cell Host Microbe 10(2):92–93

    Article  PubMed  CAS  Google Scholar 

  121. Ehrengruber MU, Schlesinger S, Lundstrom K (2011) Alphaviruses: Semliki forest virus and Sindbis virus vectors for gene transfer into neurons. Curr Protoc Neurosci Chapter 4:Unit 4.22

    Google Scholar 

  122. Lundstrom K (2009) Alphaviruses in gene therapy. Viruses 1(1):13–25

    Article  PubMed  CAS  Google Scholar 

  123. Haywood AM (2010) Membrane uncoating of intact enveloped viruses. J Virol 84(21):10946–10955

    Article  PubMed  CAS  Google Scholar 

  124. Bitzer M, Armeanu S, Lauer UM, Neubert WJ (2003) Sendai virus vectors as an emerging negative-strand RNA viral vector system. J Gene Med 5(7):543–553

    Article  PubMed  CAS  Google Scholar 

  125. Kinoh H, Inoue M (2008) New cancer therapy using genetically-engineered oncolytic Sendai virus vector. Front Biosci 13:2327–2334

    Article  PubMed  CAS  Google Scholar 

  126. Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y, Ikehara Y, Kobayashi T, Segawa H, Takayasu S, Sato H, Motomura K, Uchida E, Kanayasu-Toyoda T, Asashima M, Nakauchi H, Yamaguchi T, Nakanishi M (2010) Development of defective and persistent Sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286(6):4760–4771

    Article  PubMed  CAS  Google Scholar 

  127. Kaneda Y (2011) HVJ liposomes and HVJ envelope vectors. Cold Spring Harb Protoc 2011(10):1281–1289

    Article  PubMed  Google Scholar 

  128. Galla M, Schambach A, Falk CS, Maetzig T, Kuehle J, Lange K, Zychlinski D, Heinz N, Brugman MH, Gohring G, Izsvak Z, Ivics Z, Baum C (2011) Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Res 39(16):7147–7160

    Article  PubMed  CAS  Google Scholar 

  129. Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23(2):165–175

    Article  PubMed  CAS  Google Scholar 

  130. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630

    Article  PubMed  CAS  Google Scholar 

  131. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann K-K, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997

    Article  PubMed  Google Scholar 

  132. Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314(5801):997–1001

    Article  PubMed  CAS  Google Scholar 

  133. Onoguchi K, Yoneyama M, Fujita T (2011) Retinoic acid-inducible gene-I-like receptors. J Interferon Cytokine Res 31(1):27–31

    Article  PubMed  CAS  Google Scholar 

  134. Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7(2):131–137

    Article  PubMed  CAS  Google Scholar 

  135. Honda K, Taniguchi T (2006) IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 6(9):644–658

    Article  PubMed  CAS  Google Scholar 

  136. Angel MYM (2010) Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins. PLoS One 5(7):e11756

    Article  PubMed  CAS  Google Scholar 

  137. Pindel A, Sadler A (2011) The role of protein kinase R in the interferon response. J Interferon Cytokine Res 31(1):59–70

    Article  PubMed  CAS  Google Scholar 

  138. Nallagatla SRTR, Toroney R, Bevilacqua PC (2008) A brilliant disguise for self RNA: 5′-end and internal modifications of primary transcripts suppress elements of innate immunity. RNA Biol 5(3):140–144

    Article  PubMed  CAS  Google Scholar 

  139. Kariko K, Muramatsu H, Ludwig J, Weissman D (2011) Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 39(21):e142. doi:10.1093/nar/gkr695

    Article  PubMed  CAS  Google Scholar 

  140. Anderson BR, Muramatsu H, Nallagatla SR, Bevilacqua PC, Sansing LH, Weissman D, Kariko K (2010) Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res 38(17):5884–5892

    Article  PubMed  CAS  Google Scholar 

  141. Koski GKKK, Xu S, Weissman D, Cohen PA, Czerniecki BJ (2004) Cutting edge innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high-level IL-12 secretion by dendritic cells. J Immunol 172(7):3989–3993

    PubMed  CAS  Google Scholar 

  142. Kormann MS, Hasenpusch G, Aneja MK, Nica G, Flemmer AW, Herber-Jonat S, Huppmann M, Mays LE, Illenyi M, Schams A, Griese M, Bittmann I, Handgretinger R, Hartl D, Rosenecker J, Rudolph C (2011) Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol 29(2):154–157. doi:10.1038/nbt.1733

    Article  PubMed  CAS  Google Scholar 

  143. Weide B, Carralot JP, Reese A, Scheel B, Eigentler TK, Hoerr I, Rammensee HG, Garbe C, Pascolo S (2008) Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother 31(2):180–188

    Article  PubMed  CAS  Google Scholar 

  144. Kreiter S, Diken M, Selmi A, Tureci O, Sahin U (2011) Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 23(3):399–406

    Article  PubMed  CAS  Google Scholar 

  145. Weiss R, Scheiblhofer S, Roesler E, Ferreira F, Thalhamer J (2010) Prophylactic mRNA vaccination against allergy. Curr Opin Allergy Clin Immunol 10(6):567–574

    Article  PubMed  CAS  Google Scholar 

  146. Bringmann A, Held SA, Heine A, Brossart P (2010) RNA vaccines in cancer treatment. J Biomed Biotechnol 2010:623687

    Article  PubMed  CAS  Google Scholar 

  147. Pascolo S (2006) Vaccination with messenger RNA. Methods Mol Med 127:23–40

    PubMed  CAS  Google Scholar 

  148. Met O, Balslev E, Flyger H, Svane IM (2011) High immunogenic potential of p53 mRNA-transfected dendritic cells in patients with primary breast cancer. Breast Cancer Res Treat 125(2):395–406

    Article  PubMed  CAS  Google Scholar 

  149. Lee J, Dollins CM, Boczkowski D, Sullenger BA, Nair S (2008) Activated B cells modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are comparable to mature dendritic cells in inducing in vitro antigen-specific T-cell responses. Immunology 125(2):229–240

    Article  PubMed  CAS  Google Scholar 

  150. Van Camp K, Cools N, Stein B, Van de Velde A, Goossens H, Berneman ZN, Van Tendeloo V (2010) Efficient mRNA electroporation of peripheral blood mononuclear cells to detect memory T cell responses for immunomonitoring purposes. J Immunol Methods 354(1–2):1–10

    Article  PubMed  CAS  Google Scholar 

  151. Doucet J-D, Gauchat D, Lapointe R (2011) Identification of T-cell epitopes by a novel mRNA PCR-based epitope chase technique. J Immunother 34(2):183–186

    Article  PubMed  CAS  Google Scholar 

  152. Apcher S, Daskalogianni C, Lejeune F, Manoury B, Imhoos G, Heslop L, Fahraeus R (2011) Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc Natl Acad Sci USA 108(28):11572–11577

    Article  PubMed  CAS  Google Scholar 

  153. Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836

    PubMed  CAS  Google Scholar 

  154. Basha G, Omilusik K, Chavez-Steenbock A, Reinicke AT, Lack N, Choi KB, Jefferies WA (2012) A CD74-dependent MHC class I endolysosomal cross-presentation pathway. Nat Immunol 13(3):237–245

    Article  PubMed  CAS  Google Scholar 

  155. Rabinovich PM, Komarovskaya ME, Wrzesinski SH, Alderman JL, Budak-Alpdogan T, Karpikov A, Guo H, Flavell RA, Cheung N-K, Weissman SM, Bahceci E (2009) Chimeric receptor mRNA transfection as a tool to generate antineoplastic lymphocytes. Hum Gene Ther 20(1):51–61

    Article  PubMed  CAS  Google Scholar 

  156. Yoon SH, Lee JM, Cho HI, Kim EK, Kim HS, Park MY, Kim TG (2009) Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther 16(6):489–497

    Article  PubMed  CAS  Google Scholar 

  157. Zhao YB, Zheng ZL, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, Rosenberg SA, Morgan RA (2006) High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther 13(1):151–159

    Article  PubMed  CAS  Google Scholar 

  158. Mitchell DA, Karikari I, Cui X, Xie W, Schmittling R, Sampson JH (2008) Selective modification of antigen-specific T cells by RNA electroporation. Hum Gene Ther 19(5):511–521

    Article  PubMed  CAS  Google Scholar 

  159. Rowley J, Monie A, Hung CF, Wu TC (2009) Expression of IL-15RA or an IL-15/IL-15RA fusion on CD8+ T cells modifies adoptively transferred T-cell function in cis. Eur J Immunol 39(2):491–506

    Article  PubMed  CAS  Google Scholar 

  160. Hawkins RE, Gilham DE, Debets R, Eshhar Z, Taylor N, Abken H, Schumacher TN, ATTACK Consortium (2010) Development of adoptive cell therapy for cancer: a clinical perspective. Hum Gene Ther 21(6):665–672

    Article  PubMed  CAS  Google Scholar 

  161. Zhang L, Morgan RA (2011) Genetic engineering with T cell receptors. Adv Drug Deliv Rev 64(8):756–762

    Article  PubMed  CAS  Google Scholar 

  162. Kershaw MH, Teng MW, Smyth MJ, Darcy PK (2005) Supernatural T cells: genetic modification of T cells for cancer therapy. Nat Rev Immunol 5(12):928–940

    Article  PubMed  CAS  Google Scholar 

  163. Eshhar Z (2010) Adoptive cancer immunotherapy using genetically engineered designer T-cells: first steps into the clinic. Curr Opin Mol Ther 12(1):55–63

    PubMed  CAS  Google Scholar 

  164. Kaneko S, Mastaglio S, Bondanza A, Ponzoni M, Sanvito F, Aldrighetti L, Radrizzani M, La Seta-Catamancio S, Provasi E, Mondino A, Nagasawa T, Fleischhauer K, Russo V, Traversari C, Ciceri F, Bordignon C, Bonini C (2009) IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T lymphocytes. Blood 113(5):1006–1015

    Article  PubMed  CAS  Google Scholar 

  165. Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, Heslop HE, Rooney CM, Brenner MK, Dotti G (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24(6):1160–1170

    Article  PubMed  CAS  Google Scholar 

  166. Almasbak H, Lundby M, Rasmussen AM (2010) Non-MHC-dependent redirected T cells against tumor cells. Methods Mol Biol 629:453–493

    PubMed  Google Scholar 

  167. Barrett DM, Zhao Y, Liu X, Jiang S, Carpenito C, Kalos M, Carroll RG, June CH, Grupp SA (2011) Treatment of advanced leukemia in mice with mRNA engineered T cells. Hum Gene Ther 22(12):1575–1586

    Article  PubMed  CAS  Google Scholar 

  168. Yoon SH, Lee JM, Cho HI, Kim EK, Kim HS, Park MY, Kim TG (2009) Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther 16(6):489–497

    Article  PubMed  CAS  Google Scholar 

  169. Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, Chew A, Carroll RG, Scholler J, Levine BL, Albelda SM, June CH (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res 70(22):9053–9061

    Article  PubMed  CAS  Google Scholar 

  170. Birkholz K, Hombach A, Krug C, Reuter S, Kershaw M, Kampgen E, Schuler G, Abken H, Schaft N, Dorrie J (2009) Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer. Gene Ther 16(5):596–604

    Article  PubMed  CAS  Google Scholar 

  171. Yoon SH, Lee JM, Woo SJ, Park MJ, Park JS, Kim HS, Park MY, Sohn HJ, Kim TG (2009) Transfer of Her-2/neu specificity into cytokine-induced killer (CIK) cells with RNA encoding chimeric immune receptor (CIR). J Clin Immunol 29(6):806–814

    Article  PubMed  CAS  Google Scholar 

  172. Boissel L, Betancur M, Wels WS, Tuncer H, Klingemann H (2009) Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk Res 33(9):1255–1259

    Article  PubMed  CAS  Google Scholar 

  173. Boissel L, Betancur M, Lu W, Wels WS, Marino T, Van Etten RA, Klingemann H (2012) Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens. Leuk Lymphoma 53(5):958–965

    Article  PubMed  CAS  Google Scholar 

  174. Marin V, Dander E, Biagi E, Introna M, Fazio G, Biondi A, D′Amico G (2006) Characterization of in vitro migratory properties of anti-CD19 chimeric receptor-redirected CIK cells for their potential use in B-ALL immunotherapy. Exp Hematol 34(9):1219–1229

    Article  PubMed  CAS  Google Scholar 

  175. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  176. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  177. Yakubov E, Rechavi G, Rozenblatt S, Givol D (2010) Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Bioph Res Commun 394(1):189–193

    Article  CAS  Google Scholar 

  178. Plews JR, Li JL, Jones M, Moore HD, Mason C, Andrews PW, Na J (2010) Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach. PLoS One 5(12):e14397

    Article  PubMed  CAS  Google Scholar 

  179. Walia B, Satija N, Tripathi RP, Gangenahalli GU (2012) Induced pluripotent stem cells: fundamentals and applications of the reprogramming process and its ramifications on regenerative medicine. Stem Cell Rev 8(1):100–115

    Article  PubMed  CAS  Google Scholar 

  180. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782. doi:10.1534/genetics.111.131433

    Article  PubMed  CAS  Google Scholar 

  181. Segal DJ (2011) Zinc-finger nucleases transition to the CoDA. Nat Methods 8(1):53–55. doi:10.1038/nmeth0111-53

    Article  PubMed  CAS  Google Scholar 

  182. Carlson DF, Fahrenkrug SC, Hackett PB (2012) Targeting DNA with fingers and TALENs. Mol Ther Nucleic Acids 1 (1):e3. doi:10.1038/mtna.2011.5

    Google Scholar 

  183. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC, Zeitler B, Cherone JM, Meng X, Hinkley SJ, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29(8):731–734. doi:10.1038/nbt.1927

    Article  PubMed  CAS  Google Scholar 

  184. Flisikowska T, Thorey IS, Offner S, Ros F, Lifke V, Zeitler B, Rottmann O, Vincent A, Zhang L, Jenkins S, Niersbach H, Kind AJ, Gregory PD, Schnieke AE, Platzer J (2011) Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6(6):e21045. doi:10.1371/journal.pone.0021045

    Article  PubMed  CAS  Google Scholar 

  185. Watanabe M, Umeyama K, Matsunari H, Takayanagi S, Haruyama E, Nakano K, Fujiwara T, Ikezawa Y, Nakauchi H, Nagashima H (2010) Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases. Biochem Bioph Res Commun 402(1):14–18. doi:10.1016/j.bbrc.2010.09.092

    Article  CAS  Google Scholar 

  186. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708

    Article  PubMed  CAS  Google Scholar 

  187. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26(6):695–701. doi:10.1038/nbt1398

    Article  PubMed  CAS  Google Scholar 

  188. McCammon JM, Amacher SL (2010) Using zinc finger nucleases for efficient and heritable gene disruption in zebrafish. Methods Mol Biol 649:281–298. doi:10.1007/978-1-60761-753-2_18

    Article  PubMed  CAS  Google Scholar 

  189. Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43(6):867–879

    Article  PubMed  CAS  Google Scholar 

  190. Breaker RR (2012) Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4(2):pii: a003566

    Article  CAS  Google Scholar 

  191. Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY (2011) Understanding the transcriptome through RNA structure. Nat Rev Genet 12(9):641–655. doi:10.1038/nrg3049

    Article  PubMed  CAS  Google Scholar 

  192. Villemejane J, Mir LM (2009) Physical methods of nucleic acid transfer: general concepts and applications. Br J Pharmacol 157(2):207–219. doi:10.1111/j.1476-5381.2009.00032.x

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Rabinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rabinovich, P.M., Weissman, S.M. (2013). Cell Engineering with Synthetic Messenger RNA. In: Rabinovich, P. (eds) Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology, vol 969. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-260-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-260-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-259-9

  • Online ISBN: 978-1-62703-260-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics