Skip to main content

Advertisement

Log in

High immunogenic potential of p53 mRNA-transfected dendritic cells in patients with primary breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

As pre-existent immunity might be a reflection of an emerging anticancer response, the demonstration of spontaneous T-cell responses against tumor associated antigens (TAAs) in cancer patients may be beneficial before clinical development of dendritic cell (DC)-based cancer vaccines, because it will help to identify likely responders to TAAs among patients who qualify and may benefit from this form of immune therapy. This study aimed to determine pre-existent T-cell reactivity against the tumor suppressor protein p53 in breast cancer patients (BCP) at the time point of primary diagnosis. After a short-term stimulation with autologous wt p53 mRNA-transfected DCs, IFN-γ enzyme-linked immunosorbent spot (ELISPOT) analysis revealed p53-reactive T cells in the peripheral blood of more than 40% (15 of 36) of the tested patients. Both CD4+ and CD8+ p53-specific T cells secreted IFN-γ after stimulation with p53-transfected DCs. Interestingly, more than 72% (13 of 18) of patients with high p53 (p53high) expression in tumors were able to mount a p53-specific IFN-γ T-cell response, in contrast to only 10% (1 of 10) of healthy donors and 11% (2 of 18) of patients with low or absent p53 (p53low) expression in tumors. Furthermore, significantly higher secretion of IL-2 was detected in peripheral blood mononuclear cells after stimulation with p53-transfected DCs from patients with p53high tumor expression compared to patients with p53low tumor expression, whereas secretion of IL-10 was predominant in the latter group. The high frequency of spontaneous wt p53-reactive T cells detected in the peripheral blood of primary BCP with accumulation of p53 in tumor provides a rationale to consider DCs transfected with mRNA encoding wt p53 for clinical investigation in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DCs:

Dendritic cells

TAAs:

Tumor associated antigens

PBMCs:

Peripheral blood mononuclear cells

MFI:

Mean fluorescence intensity

ELISPOT:

Enzyme-linked immunosorbent spot

BCP:

Breast cancer patients

HD:

Healthy donors

Abs:

Antibodies

References

  1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  CAS  PubMed  Google Scholar 

  2. van der Bruggen P, Zhang Y, Chaux P et al (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 188:51–64

    Article  Google Scholar 

  3. Tacken PJ, de Vries IJ, Torensma R, Figdor CG (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802

    Article  CAS  PubMed  Google Scholar 

  4. Van Tendeloo VF, Ponsaerts P, Berneman ZN (2007) mRNA-based gene transfer as a tool for gene and cell therapy. Curr Opin Mol Ther 9:423–431

    PubMed  Google Scholar 

  5. Van Tendeloo VF, Ponsaerts P, Lardon F et al (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98:49–56

    Article  PubMed  Google Scholar 

  6. Kessler JH, Melief CJ (2007) Identification of T-cell epitopes for cancer immunotherapy. Leukemia 21:1859–1874

    Article  CAS  PubMed  Google Scholar 

  7. Theobald M, Biggs J, Dittmer D, Levine AJ, Sherman LA (1995) Targeting p53 as a general tumor antigen. Proc Natl Acad Sci USA 92:11993–11997

    Article  CAS  PubMed  Google Scholar 

  8. DeLeo AB, Whiteside TL (2008) Development of multi-epitope vaccines targeting wild-type sequence p53 peptides. Expert Rev Vaccines 7:1031–1040

    Article  CAS  PubMed  Google Scholar 

  9. Disis ML, Knutson KL, Schiffman K, Rinn K, McNeel DG (2000) Pre-existent immunity to the HER-2/neu oncogenic protein in patients with HER-2/neu overexpressing breast and ovarian cancer. Breast Cancer Res Treat 62:245–252

    Article  CAS  PubMed  Google Scholar 

  10. Nagorsen D, Scheibenbogen C, Schaller G et al (2003) Differences in T-cell immunity toward tumor-associated antigens in colorectal cancer and breast cancer patients. Int J Cancer 105:221–225

    Article  CAS  PubMed  Google Scholar 

  11. Rentzsch C, Kayser S, Stumm S et al (2003) Evaluation of pre-existent immunity in patients with primary breast cancer: molecular and cellular assays to quantify antigen-specific T lymphocytes in peripheral blood mononuclear cells. Clin Cancer Res 9:4376–4386

    CAS  PubMed  Google Scholar 

  12. Met O, Eriksen J, Svane IM (2008) Studies on mRNA electroporation of immature and mature dendritic cells: effects on their immunogenic potential. Mol Biotechnol 40:151–160

    Article  CAS  PubMed  Google Scholar 

  13. Pedersen AE, Thorn M, Gad M et al (2005) Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination. Scand J Immunol 61:147–156

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Tunon I, Ricote M, Ruiz A et al (2006) Cell cycle control related proteins (p53, p21, and Rb) and transforming growth factor beta (TGFbeta) in benign and carcinomatous (in situ and infiltrating) human breast: implications in malignant transformations. Cancer Invest 24:119–125

    Article  CAS  PubMed  Google Scholar 

  15. McCutcheon M, Wehner N, Wensky A et al (1997) A sensitive ELISPOT assay to detect low-frequency human T lymphocytes. J Immunol Methods 210:149–166

    Article  CAS  PubMed  Google Scholar 

  16. Svane IM, Pedersen AE, Johansen JS et al (2007) Vaccination with p53 peptide-pulsed dendritic cells is associated with disease stabilization in patients with p53 expressing advanced breast cancer; monitoring of serum YKL-40 and IL-6 as response biomarkers. Cancer Immunol Immunother 56:1485–1499

    Article  CAS  PubMed  Google Scholar 

  17. Goodell V, Salazar LG, Urban N et al (2006) Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer. J Clin Oncol 24:762–768

    Article  CAS  PubMed  Google Scholar 

  18. Valmori D, Scheibenbogen C, Dutoit V et al (2002) Circulating Tumor-reactive CD8(+) T cells in melanoma patients contain a CD45RA(+)CCR7(−) effector subset exerting ex vivo tumor-specific cytolytic activity. Cancer Res 62:1743–1750

    CAS  PubMed  Google Scholar 

  19. Karanikas V, Colau D, Baurain JF et al (2001) High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival. Cancer Res 61:3718–3724

    CAS  PubMed  Google Scholar 

  20. Hoffmann TK, Donnenberg AD, Finkelstein SD et al (2002) Frequencies of tetramer + T cells specific for the wild-type sequence p53(264–272) peptide in the circulation of patients with head and neck cancer. Cancer Res 62:3521–3529

    CAS  PubMed  Google Scholar 

  21. Chikamatsu K, Sakakura K, Takahashi G et al (2009) CD4+ T cell responses to HLA-DP5-restricted wild-type sequence p53 peptides in patients with head and neck cancer. Cancer Immunol Immunother 58:1441–1448

    Article  CAS  PubMed  Google Scholar 

  22. van der Burg SH, de Cock K, Menon AG et al (2001) Long lasting p53-specific T cell memory responses in the absence of anti-p53 antibodies in patients with resected primary colorectal cancer. Eur J Immunol 31:146–155

    Article  PubMed  Google Scholar 

  23. Sotiropoulou PA, Perez SA, Voelter V et al (2003) Natural CD8+ T-cell responses against MHC class I epitopes of the HER-2/neu oncoprotein in patients with epithelial tumors. Cancer Immunol Immunother 52:771–779

    Article  CAS  PubMed  Google Scholar 

  24. Lewis JD, Reilly BD, Bright RK (2003) Tumor-associated antigens: from discovery to immunity. Int Rev Immunol 22:81–112

    Article  CAS  PubMed  Google Scholar 

  25. Gnjatic S, Cai Z, Viguier M et al (1998) Accumulation of the p53 protein allows recognition by human CTL of a wild-type p53 epitope presented by breast carcinomas and melanomas. J Immunol 160:328–333

    CAS  PubMed  Google Scholar 

  26. Vierboom MP, Zwaveling S, Bos GMJ et al (2000) High steady-state levels of p53 are not a prerequisite for tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. Cancer Res 60:5508–5513

    CAS  PubMed  Google Scholar 

  27. Inokuma M, dela Rosa C, Schmitt C et al (2007) Functional T cell responses to tumor antigens in breast cancer patients have a distinct phenotype and cytokine signature. J Immunol 179:2627–2633

    CAS  PubMed  Google Scholar 

  28. Sommerfeldt N, Schutz F, Sohn C et al (2006) The shaping of a polyvalent and highly individual T-cell repertoire in the bone marrow of breast cancer patients. Cancer Res 66:8258–8265

    Article  CAS  PubMed  Google Scholar 

  29. Nishikawa H, Kato T, Tanida K et al (2003) CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci USA 100:10902–10906

    Article  CAS  PubMed  Google Scholar 

  30. Okada K, Komuta K, Hashimoto S et al (2000) Frequency of apoptosis of tumor-infiltrating lymphocytes induced by fas counterattack in human colorectal carcinoma and its correlation with prognosis. Clin Cancer Res 6:3560–3564

    CAS  PubMed  Google Scholar 

  31. Kurnick JT, Ramirez-Montagut T, Boyle LA et al (2001) A novel autocrine pathway of tumor escape from immune recognition: melanoma cell lines produce a soluble protein that diminishes expression of the gene encoding the melanocyte lineage melan-A/MART-1 antigen through down-modulation of its promoter. J Immunol 167:1204–1211

    CAS  PubMed  Google Scholar 

  32. Nikitina EY, Clark JI, Van Beynen J et al (2001) Dendritic cells transduced with full-length wild-type p53 generate antitumor cytotoxic T lymphocytes from peripheral blood of cancer patients. Clin Cancer Res 7:127–135

    CAS  PubMed  Google Scholar 

  33. Humrich J, Jenne L (2003) Viral vectors for dendritic cell-based immunotherapy. Curr Top Microbiol Immunol 276:241–259

    CAS  PubMed  Google Scholar 

  34. Reuschenbach M, von Knebel DM, Wentzensen N (2009) A systematic review of humoral immune responses against tumor antigens. Cancer Immunol Immunother 8:1535–1544

    Article  Google Scholar 

  35. Vujanovic L, Ranieri E, Gambotto A et al (2006) IL-12p70 and IL-18 gene-modified dendritic cells loaded with tumor antigen-derived peptides or recombinant protein effectively stimulate specific Type-1 CD4+ T-cell responses from normal donors and melanoma patients in vitro. Cancer Gene Ther 13:798–805

    Article  CAS  PubMed  Google Scholar 

  36. Minkis K, Kavanagh DG, Alter G et al (2008) Type 2 Bias of T cells expanded from the blood of melanoma patients switched to type 1 by IL-12p70 mRNA-transfected dendritic cells. Cancer Res 68:9441–9450

    Article  CAS  PubMed  Google Scholar 

  37. Hung K, Hayashi R, Lafond-Walker A et al (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357–2368

    Article  CAS  PubMed  Google Scholar 

  38. Pardoll DM, Topalian SL (1998) The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 10:588–594

    Article  CAS  PubMed  Google Scholar 

  39. Gilboa E, Vieweg J (2004) Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 199:251–263

    Article  CAS  PubMed  Google Scholar 

  40. Muller MR, Grunebach F, Nencioni A, Brossart P (2003) Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol 170:5892–5896

    PubMed  Google Scholar 

  41. Kyte JA, Kvalheim G, Aamdal S, Saeboe-Larssen S, Gaudernack G (2005) Preclinical full-scale evaluation of dendritic cells transfected with autologous tumor-mRNA for melanoma vaccination. Cancer Gene Ther 12:579–591

    Article  CAS  PubMed  Google Scholar 

  42. Nimmerjahn F, Milosevic S, Behrends U et al (2003) Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33:1250–1259

    Article  CAS  PubMed  Google Scholar 

  43. Kalady MF, Onaitis MW, Padilla KM et al (2002) Enhanced dendritic cell antigen presentation in RNA-based immunotherapy. J Surg Res 105:17–24

    Article  CAS  PubMed  Google Scholar 

  44. Nair SK, Boczkowski D, Morse M et al (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16:364–369

    Article  CAS  PubMed  Google Scholar 

  45. Schaft N, Dorrie J, Thumann P et al (2005) Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol 174:3087–3097

    CAS  PubMed  Google Scholar 

  46. Javorovic M, Pohla H, Frankenberger B, Wolfel T, Schendel DJ (2005) RNA transfer by electroporation into mature dendritic cells leading to reactivation of effector-memory cytotoxic T lymphocytes: a quantitative analysis. Mol Ther 12:734–743

    Article  CAS  PubMed  Google Scholar 

  47. Wang RF, Wang HY (2002) Enhancement of antitumor immunity by prolonging antigen presentation on dendritic cells. Nat Biotechnol 20:149–154

    Article  CAS  PubMed  Google Scholar 

  48. He Y, Zhang J, Mi Z, Robbins P, Falo LD Jr (2005) Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. J Immunol 174:3808–3817

    CAS  PubMed  Google Scholar 

  49. Ludewig B, McCoy K, Pericin M et al (2001) Rapid peptide turnover and inefficient presentation of exogenous antigen critically limit the activation of self-reactive CTL by dendritic cells. J Immunol 166:3678–3687

    CAS  PubMed  Google Scholar 

  50. Bachmann MF, Beerli RR, Agnellini P et al (2006) Long-lived memory CD8+ T cells are programmed by prolonged antigen exposure and low levels of cellular activation. Eur J Immunol 36:842–854

    Article  CAS  PubMed  Google Scholar 

  51. Busch DH, Kerksiek KM, Pamer EG (2000) Differing roles of inflammation and antigen in T cell proliferation and memory generation. J Immunol 164:4063–4070

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the steering committee at Herlev Hospital, Denmark for access to patient material from the local biobank MAMBIO. We thank E. Gilboa (Duke University Medical Center, Durham, NC, USA) for providing the pSP73-SphA64 plasmid used in this study. This work was supported by the Aase and Ejnar Danielsens Foundation and by various grants from Cancerfonden, Grosserer L. F. Foghts and Grosserer Valdemar Foersom og Hustru Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özcan Met.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Met, Ö., Balslev, E., Flyger, H. et al. High immunogenic potential of p53 mRNA-transfected dendritic cells in patients with primary breast cancer. Breast Cancer Res Treat 125, 395–406 (2011). https://doi.org/10.1007/s10549-010-0844-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-0844-9

Keywords

Navigation