Skip to main content

Using Zinc Finger Nucleases for Efficient and Heritable Gene Disruption in Zebrafish

  • Protocol
  • First Online:
Engineered Zinc Finger Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 649))

Abstract

While the experimental tools developed for zebrafish have continued to advance the organism as a laboratory model, techniques for reverse genetics remain somewhat limited in scope. Zinc finger nucleases (ZFNs), chimeric fusions between DNA-binding zinc finger proteins and the non-specific cleavage domain of the FokI endonuclease, hold great promise for targeted mutagenesis in zebrafish, as demonstrated by two recent publications (Doyon et al., 2008, Nat Biotechnol. 26, 702–708; Meng et al., 2008, Nat Biotechnol. 26, 695–701). Because ZFNs can be designed to recognize a unique sequence in the genome, they can specifically bind and cleave a target locus, creating a double-strand break (DSB) that is repaired by one of two major DNA repair pathways. Repair by one of these pathways, non-homologous end joining, is often mutagenic, allowing one to screen for induced mutations in the target locus. By injecting into zebrafish embryos RNA encoding ZFNs that target three different loci, two groups have shown that ZFNs work efficiently to induce somatic and germline mutations (reviewed in (3)). We review here protocols for injection of ZFN-encoding mRNA into zebrafish embryos, screening of injected fish for induced mutations, and subsequent recovery of the induced mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doyon, Y., McCammon, J.M., Miller, J.C., Faraji, F., Ngo, C., Katibah, G.E., et al. (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 26, 702–708.

    Article  CAS  PubMed  Google Scholar 

  2. Meng, X., Noyes, M.B., Zhu, L.J., Lawson, N.D., and Wolfe, S.A. (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. 26, 695–701.

    Article  CAS  PubMed  Google Scholar 

  3. Amacher, S.L. (2008) Emerging gene knockout technology in zebrafish: zinc-finger nucleases. Brief Funct Genomic Proteomic. 7, 460–464.

    Article  CAS  PubMed  Google Scholar 

  4. Stemple, D.L. (2004) TILLING – a high-throughput harvest for functional genomics. Nat Rev Genet. 5, 145–150.

    Article  CAS  PubMed  Google Scholar 

  5. Moens, C.B., Donn, T.M., Wolf-Saxon, E.R., and Ma, T.P. (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic. 7, 454–459.

    Article  CAS  PubMed  Google Scholar 

  6. Bibikova, M., Golic, M., Golic, K.G., and Carroll, D. (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 161, 1169–1175.

    CAS  PubMed  Google Scholar 

  7. Morton, J., Davis, M.W., Jorgensen, E.M., and Carroll, D. (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci USA. 103, 16370–16375.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, Y.G., Cha, J., and Chandrasegaran, S. (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 93, 1156–1160.

    Article  CAS  PubMed  Google Scholar 

  9. Pabo, C.O., Peisach, E., and Grant, R.A. (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem. 70, 313–340.

    Article  CAS  PubMed  Google Scholar 

  10. Smith, J., Berg, J., and Chandrasegaran, S. (1999) A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res. 27, 674–681.

    Article  CAS  PubMed  Google Scholar 

  11. Valerie, K. and Povirk, L.F. (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene. 22, 5792–5812.

    Article  CAS  PubMed  Google Scholar 

  12. Maeder, M.L., Thibodeau-Beganny, S., Osiak, A., Wright, D.A., Anthony, R.M., Eichtinger, M., et al. (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 31, 294–301.

    Article  CAS  PubMed  Google Scholar 

  13. Ramirez, C.L., Foley, J.E., Wright, D.A., Müller-Lerch, F., Rahman, S.H., Cornu, T.I., et al. (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. 5, 374–375.

    Article  CAS  PubMed  Google Scholar 

  14. For resources and reagents related to ZFN design and application in zebrafish developed by the Wolfe and Lawson labs (2), we refer readers to their respective lab websites (http://labs.umassmed.edu/WolfeLab and http://lawsonlab.umassmed.edu). The available resources and tools include the plasmids and bacterial selection strain for bacterial 1-hybrid selections to make ZFNs, as well as an online tool to help identify good ZFN target sites (http://pgfe.umassmed.edu/ZFPsearch.html).

  15. Streisinger, G., Coale, F., Taggart, C., Walker, C., and Grunwald, D.J. (1989) Clonal origins of cells in the pigmented retina of the zebrafish eye. Dev Biol. 131, 60–69.

    Article  CAS  PubMed  Google Scholar 

  16. Lamason, R.L., Mohideen, M.A., Mest, J.R., Wong, A.C., Norton, H.L., Aros, M.C., et al. (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science. 310, 1782–1786.

    Article  CAS  PubMed  Google Scholar 

  17. Halpern, M.E., Ho, R.K., Walker, C., and Kimmel, C.B. (1993) Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell. 75, 99–111.

    CAS  PubMed  Google Scholar 

  18. Schulte-Merker, S., van Eeden, F.J.M., Halpern, M.E., Kimmel, C.B., and Nüsslein-Volhard, C. (1994) no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development. 120, 1009–1015.

    CAS  PubMed  Google Scholar 

  19. Agarose or Agar Troughs: http://zfin.org/zf_info/zfbook/chapt5/5.1.html Other alternatives: http://www.springerprotocols.com/Full/doi/10.1385/1-59259-678-9:125?encCode=QkVDOjUyMTo5LTg3Ni05NTI5NS0x&tokenString=165AlvaizdUK49gbSjNE4w==

  20. Durai, S., Bosley, A., Abulencia, A.B., Chandrasegaran, S., and Ostermeier, M. (2006) A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen. 9, 301–311.

    Article  CAS  PubMed  Google Scholar 

  21. Thibodeau-Beganny, S. and Joung, J.K. (2007) Engineering Cys2His2 zinc finger domains using a bacterial cell-based two-hybrid selection. Method Mol Biol. 408 , 317–334.

    Article  CAS  Google Scholar 

  22. Szczepek, M., Brondani, V., Büchel, J., Serrano, L., Segal, D.J., and Cathomen, T. (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 25, 786–793.

    Article  CAS  PubMed  Google Scholar 

  23. Miller, J.C., Holmes, M.C., Wang, J., Guschin, D.Y., Lee, Y.L., Rupniewski, I., et al. (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 25, 778–785.

    Article  CAS  PubMed  Google Scholar 

  24. Provost, E., Rhee, J., and Leach, S.D. (2007) Viral 2A peptides allow expression of multiple proteins from a single ORF in transgenic zebrafish embryos. Genesis. 45, 625–629.

    Article  CAS  PubMed  Google Scholar 

  25. Westerfield, M. (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4th ed. University of Oregon Press, Eugene.

    Google Scholar 

  26. Foley, J.E., Yeh, J.R., Maeder, M.L., Reyon, D., Sander, J.D., Peterson, R.T., and Joung, J.K. (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized pool ENgineering (OPEN). PLoS One 4, e4348.

    Google Scholar 

Download references

Note added in proof

After this manuscript was reviewed, another group published the successful application of ZFN-mediated mutagenesis in zebrafish (26).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

McCammon, J.M., Amacher, S.L. (2010). Using Zinc Finger Nucleases for Efficient and Heritable Gene Disruption in Zebrafish. In: Mackay, J., Segal, D. (eds) Engineered Zinc Finger Proteins. Methods in Molecular Biology, vol 649. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-753-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-753-2_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-752-5

  • Online ISBN: 978-1-60761-753-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics