Skip to main content

Advertisement

Log in

Application of Quantitative Pharmacology in Development of Therapeutic Monoclonal Antibodies

  • Review Article
  • Theme: Pharmacokinetic/Pharmadynamic Modeling and Simulation in Drug Discovery and Translational Research
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The advancement of therapeutic monoclonal antibodies during various stages of the drug development process can be effectively streamlined when appropriate translational strategies are applied. Design of successful translational strategies for development of monoclonal antibodies should allow for understanding of the dose– and concentration–response relationships with respect to both beneficial and toxic effects from early phases of drug development. Evaluation of relevant biomarkers during early stages of drug development should facilitate the successful design of safe and effective dosing strategies. Moreover, application of quantitative pharmacology is critical for translation of exposure–response relationships early on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DATAMONITOR USA. Monoclonal antibodies: update 2008. June 2008.

  2. La Merie SL. Top 20 biologics. R&D Pipline News. March 2009.

  3. Bornstein GG, Queva C, Tabrizi M, van Abbema A, Chavez C, Wang P, et al. Development of a new fully human anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. Investigational New Drugs. 2009. doi:10.1007/s10637-009-9291-z.

  4. Tabrizi M, Suria H. Application of translational biomarkers in development of antibody-based therapeutics. Drug Discov. 2009;6(1):36–40. http://wwwtouchbriefingscom/ebooks/A1j0xr/drugseries/resources/indexhtm?referrerUrl=.

  5. Tabrizi MA, Bornstein GG, Klakamp SL, Drake A, Knight R, Roskos L. Translational strategies for development of monoclonal antibodies from discovery to the clinic. Drug Discov Today. 2009;14(5–6):298–305.

    Article  PubMed  CAS  Google Scholar 

  6. Bornstein GG, Klakamp SL, Andrews L, Boyle WJ, Tabrizi M. Surrogate approaches in development of monoclonal antibodies. Drug Discov Today. 2009;14(23–24):1159–65.

    Article  PubMed  CAS  Google Scholar 

  7. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018–28.

    Article  PubMed  CAS  Google Scholar 

  8. Buckley LA, Benson K, Davis-Bruno K, Dempster M, Finch GL, Harlow P, et al. Nonclinical aspects of biopharmaceutical development: discussion of case studies at a PhRMA-FDA workshop. Int J Toxicol. 2008;27(4):303–12.

    Article  PubMed  CAS  Google Scholar 

  9. Tabrizi M, Roskos LK. Exposure–response relationships for therapeutic biologic products. In: Meibohem B, editor. Pharmacokinetics and pharmacodynamics of biotech drugs. New York: Wiley; 2006. p. 295–327.

    Chapter  Google Scholar 

  10. Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2009;12:33–43. doi:10.1208/s12248-009-9157-5.

    Article  PubMed  CAS  Google Scholar 

  11. Tabrizi MA, Roskos LK. Preclinical and clinical safety of monoclonal antibodies. Drug Discov Today. 2007;12(13–14):540–7.

    Article  PubMed  CAS  Google Scholar 

  12. Meibohm B, editor. Pharmacokinetics and pharmacodynamics of biotech drugs: principles and case studies in drug development. Weinheim: Wiley; 2006.

    Google Scholar 

  13. Putnam WS, Li J, Haggstrom J, Ng C, Kadkhodayan-Fischer S, Cheu M, et al. Use of quantitative pharmacology in the development of HAE1, a high-affinity anti-IgE monoclonal antibody. AAPS J. 2008;10(2):425–30.

    Article  PubMed  CAS  Google Scholar 

  14. Holford NH, Sheiner LB. Understanding the dose–effect relationship: clinical application of pharmacokinetic–pharmacodynamic models. Clin Pharmacokinet. 1981;6(6):429–53.

    Article  PubMed  CAS  Google Scholar 

  15. Holford NH, Sheiner LB. Kinetics of pharmacologic response. Pharmacol Ther. 1982;16(2):143–66.

    Article  PubMed  CAS  Google Scholar 

  16. Jusko WJ. Receptor-mediated pharmacodynamics of corticosteroids. Prog Clin Biol Res. 1994;387:261–70.

    PubMed  CAS  Google Scholar 

  17. Jusko WJ, Ko HC. Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther. 1994;56(4):406–19.

    Article  PubMed  CAS  Google Scholar 

  18. Levy G. Kinetics of drug action: an overview. J Allergy Clin Immunol. 1986;78(4 Pt 2):754–61.

    Article  PubMed  CAS  Google Scholar 

  19. Levy G, Gibaldi M. Pharmacokinetics of drug action. Annu Rev Pharmacol. 1972;12:85–98.

    Article  PubMed  CAS  Google Scholar 

  20. Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos. 2003;31(5):510–8.

    Article  PubMed  CAS  Google Scholar 

  21. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    Article  PubMed  CAS  Google Scholar 

  22. Mager DE, Jusko WJ. Development of translational pharmacokinetic–pharmacodynamic models. Clin Pharmacol Ther. 2008;83(6):909–12.

    Article  PubMed  CAS  Google Scholar 

  23. Roskos LK, Lum P, Lockbaum P, Schwab G, Yang BB. Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol. 2006;46(7):747–57.

    Article  PubMed  CAS  Google Scholar 

  24. Danhof M, de Jongh J, De Lange EC, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol. 2007;47:357–400.

    Article  PubMed  CAS  Google Scholar 

  25. Tabrizi-Fard MA, Fung HL. Effects of nitro-l-arginine on blood pressure and cardiac index in anesthetized rats: a pharmacokinetic–pharmacodynamic analysis. Pharm Res. 1998;15(7):1063–8.

    Article  PubMed  CAS  Google Scholar 

  26. Garg A, Balthasar JP. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn. 2007;34(5):687–709.

    Article  PubMed  CAS  Google Scholar 

  27. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68.

    Article  PubMed  CAS  Google Scholar 

  28. Marathe A, Peterson MC, Mager DE. Integrated cellular bone homeostasis model for denosumab pharmacodynamics in multiple myeloma patients. J Pharmacol Exp Ther. 2008;326(2):555–62.

    Article  PubMed  CAS  Google Scholar 

  29. Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther. 1994;56(3):248–52.

    Article  PubMed  CAS  Google Scholar 

  30. Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ. A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol. 2007;63(5):548–61.

    Article  PubMed  CAS  Google Scholar 

  31. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA, et al. Model-based drug development. Clin Pharmacol Ther. 2007;82(1):21–32.

    Article  PubMed  CAS  Google Scholar 

  32. Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1–2):81–8.

    Article  PubMed  CAS  Google Scholar 

  33. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23(9):1147–57.

    Article  PubMed  CAS  Google Scholar 

  34. Carter PJ. Potent antibody therapeutics by design. Nat Rev. 2006;6(5):343–57.

    Article  CAS  Google Scholar 

  35. Carter PJ, Senter PD. Antibody–drug conjugates for cancer therapy. Cancer J. 2008;14(3):154–69. Sudbury, Mass.

    Article  PubMed  CAS  Google Scholar 

  36. Chapman K, Pullen N, Graham M, Ragan I. Preclinical safety testing of monoclonal antibodies: the significance of species relevance. Nat Rev Drug Discov. 2007;6(2):120–6.

    Article  PubMed  CAS  Google Scholar 

  37. Rowinsky EK, Schwartz GH, Gollob JA, Thompson JA, Vogelzang NJ, Figlin R, et al. Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. J Clin Oncol. 2004;22(15):3003–15.

    Article  PubMed  CAS  Google Scholar 

  38. Chau CH, Rixe O, McLeod H, Figg WD. Validation of analytic methods for biomarkers used in drug development. Clin Cancer Res. 2008;14(19):5967–76.

    Article  PubMed  Google Scholar 

  39. Lee JW, Figeys D, Vasilescu J. Biomarker assay translation from discovery to clinical studies in cancer drug development: quantification of emerging protein biomarkers. Adv Cancer Res. 2007;96:269–98.

    Article  PubMed  CAS  Google Scholar 

  40. Baert F, Noman M, Vermeire S, Van Assche G, D’Haens G, Carbonez A, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn's disease. N Engl J Med. 2003;348(7):601–8.

    Article  PubMed  CAS  Google Scholar 

  41. Cassinotti A, Travis S. Incidence and clinical significance of immunogenicity to infliximab in Crohn's disease: a critical systematic review. Inflamm Bowel Dis. 2009;15(8):1264–75.

    Article  PubMed  Google Scholar 

  42. Mahmood I, Green MD. Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet. 2005;44(4):331–47.

    Article  PubMed  CAS  Google Scholar 

  43. Ponce R, Abad L, Amaravadi L, Gelzleichter T, Gore E, Green J, et al. Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul Toxicol Pharmacol. 2009;54(2):164–82.

    Article  PubMed  CAS  Google Scholar 

  44. Rojas JR, Taylor RP, Cunningham MR, Rutkoski TJ, Vennarini J, Jang H, et al. Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys. J Pharmacol Exp Ther. 2005;313(2):578–85.

    Article  PubMed  CAS  Google Scholar 

  45. Klakamp SL, Lu H, Tabrizi M, Funelas C, Roskos LK, Coleman D. Application of analytical detection concepts to immunogenicity testing. Anal Chem. 2007;79(21):8176–84.

    Article  PubMed  CAS  Google Scholar 

  46. Liang M, Klakamp SL, Funelas C, Lu H, Lam B, Herl C, et al. Detection of high- and low-affinity antibodies against a human monoclonal antibody using various technology platforms. Assay Drug Dev Technol. 2007;5(5):655–62.

    Article  PubMed  CAS  Google Scholar 

  47. Geng D, Shankar G, Schantz A, Rajadhyaksha M, Davis H, Wagner C. Validation of immunoassays used to assess immunogenicity to therapeutic monoclonal antibodies. J Pharm Biomed Anal. 2005;39(3–4):364–75.

    Article  PubMed  CAS  Google Scholar 

  48. Roskos LK, Kellermann S-A, Foon KA. Human antiglobulin responses. In: Lotze MT, Thompson AW, editors. Measuring immunity: basic science and clinical practice. London: Elsevier Academic; 2005. p. 172–86.

    Google Scholar 

  49. Bussiere JL, Martin P, Horner M, Couch J, Flaherty M, Andrews L, et al. Alternative strategies for toxicity testing of species-specific biopharmaceuticals. Int J Toxicol. 2009;28(3):230–53.

    Article  PubMed  CAS  Google Scholar 

  50. Xu Z, Vu T, Lee H, Hu C, Ling J, Yan H, et al. Population pharmacokinetics of golimumab, an anti-tumor necrosis factor-{alpha} human monoclonal antibody, in patients with psoriatic arthritis. J Clin Pharmacol. 2009;49(9):1056–70.

    Article  PubMed  CAS  Google Scholar 

  51. Avastin. Prescribing information. 2009. http://www.gene.com/gene/products/information/pdf/avastin-prescribing.pdf.

  52. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double- blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371(9625):1675–84.

    Article  PubMed  CAS  Google Scholar 

  53. Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther. 2006;28(11):1779–802.

    Article  PubMed  CAS  Google Scholar 

  54. Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005;65(3):671–80.

    PubMed  CAS  Google Scholar 

  55. Hendeles L, Asmus M, Chesrown S. Evaluation of cytokine modulators for asthma. Paediatr Respir Rev. 2004;5(A):S107–12.

    Article  PubMed  Google Scholar 

  56. Hart TK, Cook RM, Zia-Amirhosseini P, Minthorn E, Sellers TS, Maleeff BE, et al. Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J Allergy Clin Immunol. 2001;108(2):250–7.

    Article  PubMed  CAS  Google Scholar 

  57. Mahler DA, Huang S, Tabrizi M, Bell GM. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest. 2004;126(3):926–34.

    Article  PubMed  CAS  Google Scholar 

  58. Milgrom H, Fick Jr RB, Su JQ, Reimann JD, Bush RK, Watrous ML, et al. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N Engl J Med. 1999;341(26):1966–73.

    Article  PubMed  CAS  Google Scholar 

  59. Walsh GM. Mepolizumab and eosinophil-mediated disease. Curr Med Chem. 2009;16(36):4774–8.

    Article  PubMed  CAS  Google Scholar 

  60. Zarogiannis S, Gourgoulianis KI, Kostikas K. Anti-interleukin-5 therapy and severe asthma. N Engl J Med. 2009;360(24):2576. author reply 7.

    Article  PubMed  CAS  Google Scholar 

  61. Huang S, Mills L, Mian B, Tellez C, McCarty M, Yang XD, et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol. 2002;161(1):125–34.

    PubMed  CAS  Google Scholar 

  62. Yang XD, Corvalan JR, Wang P, Roy CM, Davis CG. Fully human anti- interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol. 1999;66(3):401–10.

    PubMed  CAS  Google Scholar 

  63. Zhou H, Hu C, Zhu Y, Lu M, Liao S, Yeilding N, et al. Population-based exposure-efficacy modeling of ustekinumab in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2009;50(3):257–67.

    PubMed  Google Scholar 

  64. Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J, et al. Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2009;49(2):162–75.

    Article  PubMed  CAS  Google Scholar 

  65. Margolin K, Gordon MS, Holmgren E, Gaudreault J, Novotny W, Fyfe G, et al. Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J Clin Oncol. 2001;19(3):851–6.

    PubMed  CAS  Google Scholar 

  66. Hsei V, Deguzman GG, Nixon A, Gaudreault J. Complexation of VEGF with bevacizumab decreases VEGF clearance in rats. Pharm Res. 2002;19(11):1753–6.

    Article  PubMed  CAS  Google Scholar 

  67. Gordon MS, Margolin K, Talpaz M, Sledge Jr GW, Holmgren E, Benjamin R, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol. 2001;19(3):843–50.

    PubMed  CAS  Google Scholar 

  68. Fox JA, Hotaling TE, Struble C, Ruppel J, Bates DJ, Schoenhoff MB. Tissue distribution and complex formation with IgE of an anti-IgE antibody after intravenous administration in cynomolgus monkeys. J Pharmacol Exp Ther. 1996;279(2):1000–8.

    PubMed  CAS  Google Scholar 

  69. Georgieva A. Regulation of bone by Wnt pathway. The American Conference on Pharmacometrics, March 9–12, Tucson, Arizona, USA, 2008. http://tucson2008.go-acop.org/pdfs/7-Georgieva_FINAL.pdf.

  70. Griffiths CE, Strober BE, van de Kerkhof P, Ho V, Fidelus-Gort R, Yeilding N, et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. New Engl J Med. 2010;362(2):118–28.

    Article  PubMed  CAS  Google Scholar 

  71. Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P. Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother Pharmacol. 2005;56(4):361–9.

    Article  PubMed  CAS  Google Scholar 

  72. Chen Q, Manning CD, Millar H, McCabe FL, Ferrante C, Sharp C, et al. CNTO 95, a fully human anti alphav integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells. Clin Exp Metastasis. 2008;25(2):139–48.

    Article  PubMed  CAS  Google Scholar 

  73. Foon KA, Yang XD, Weiner LM, Belldegrun AS, Figlin RA, Crawford J, et al. Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys. 2004;58(3):984–90.

    PubMed  CAS  Google Scholar 

  74. Giusti RM, Cohen MH, Keegan P, Pazdur R. FDA review of a panitumumab (Vectibix) clinical trial for first-line treatment of metastatic colorectal cancer. Oncologist. 2009;14(3):284–90.

    Article  PubMed  CAS  Google Scholar 

  75. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.

    PubMed  CAS  Google Scholar 

  76. Mullamitha SA, Ton NC, Parker GJ, Jackson A, Julyan PJ, Roberts C, et al. Phase I evaluation of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors. Clin Cancer Res. 2007;13(7):2128–35.

    Article  PubMed  CAS  Google Scholar 

  77. Ng CM, Bruno R, Combs D, Davies B. Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol. 2005;45(7):792–801.

    Article  PubMed  CAS  Google Scholar 

  78. Sun YN, Lu JF, Joshi A, Compton P, Kwon P, Bruno RA. Population pharmacokinetics of efalizumab (humanized monoclonal anti-CD11a antibody) following long-term subcutaneous weekly dosing in psoriasis subjects. J Clin Pharmacol. 2005;45(4):468–76.

    Article  PubMed  CAS  Google Scholar 

  79. Vugmeyster Y, Howell K, Bakshl A, Flores C, Canova-Davis E. Effect of anti-CD20 monoclonal antibody, Rituxan, on cynomolgus monkey and human B cells in a whole blood matrix. Cytom A. 2003;52(2):101–9.

    Article  CAS  Google Scholar 

  80. Vugmeyster Y, Howell K, McKeever K, Combs D, Canova-Davis E. Differential in vivo effects of rituximab on two B-cell subsets in cynomolgus monkeys. Int Immunopharmacol. 2003;3(10–11):1477–81.

    Article  PubMed  CAS  Google Scholar 

  81. Ng CM, Bai S, Takimoto CH, Tang MT, Tolcher AW. Mechanism-based receptor-binding model to describe the pharmacokinetic and pharmacodynamic of an anti-alpha(5)beta (1) integrin monoclonal antibody (volociximab) in cancer patients. Cancer Chem Pharmacol. 2009;65:207–17.

    Article  CAS  Google Scholar 

  82. Ricart AD, Tolcher AW, Liu G, Holen K, Schwartz G, Albertini M, et al. Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin Cancer Res. 2008;14(23):7924–9.

    Article  PubMed  CAS  Google Scholar 

  83. Ma P, Yang BB, Wang YM, Peterson M, Narayanan A, Sutjandra L, et al. Population pharmacokinetic analysis of panitumumab in patients with advanced solid tumors. J Clin Pharmacol. 2009;49(10):1142–56.

    Article  PubMed  CAS  Google Scholar 

  84. Vectibix® (Panitumumab) Prescribing information. 2009. http://www.vectibix.com/prescribing_information/prescribing_information.html.

  85. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29(2):155–92.

    Article  PubMed  CAS  Google Scholar 

  86. Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M, et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res. 2006;12(4):1221–8.

    Article  PubMed  CAS  Google Scholar 

  87. Lipton A, Steger GG, Figueroa J, Alvarado C, Solal-Celigny P, Body JJ, et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol. 2007;25(28):4431–7.

    Article  PubMed  CAS  Google Scholar 

  88. Lipton A, Steger GG, Figueroa J, Alvarado C, Solal-Celigny P, Body JJ, et al. Extended efficacy and safety of denosumab in breast cancer patients with bone metastases not receiving prior bisphosphonate therapy. Clin Cancer Res. 2008;14(20):6690–6.

    Article  PubMed  CAS  Google Scholar 

  89. Peterson MC, Stouch BJ, Chen D, Baughman S, Holloway DL, Bekker PJ, et al. A PK/PD model developed in cynomolgus monkeys predicts concentrations and effects of AMG 162, a fully human monoclonal antibody against RANKL, in healthy postmenopausal women. AAPS, 2004. http://www.aapspharmaceutica.com/inside/focus_groups/ModelSim/imagespdfs/04Peterson.pdf

  90. McClung MR. Inhibition of RANKL as a treatment for osteoporosis: preclinical and early clinical studies. Curr Osteoporos Rep. 2006;4(1):28–33.

    Article  PubMed  Google Scholar 

  91. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006;354(8):821–31.

    Article  PubMed  CAS  Google Scholar 

  92. Facon T, Brazier M, Faucompré J, Hennache B, Leleu X, Kargar K, et al. Evaluation of urinary markers for bone resorption (Dpd, Ctx, Ntx) in patients with monoclonal gammopathy of undetermined significance and multiple myeloma. http://www.cancereducation.com/CancerSysPagesNB/abstracts/mmrf/7/aare5.pdf

  93. Peterson M, Stouch B, Chen D, Baughman S, Holloway D, Bekker P, et al. A population PK/PD model describes the rapid, and sustained suppression of urinary N-telopeptidetelopeptide following administration of AMG 162, a fully human monoclonal antibody against RANKL, to healthy postmenopausal women. AAPS, 2004. http://www.aapspharmaceutica.com/inside/focus_groups/poppk/imagespdfs/PopPKPD-2004Final.pdf

  94. Desjarlais JR, Lazar GA, Zhukovsky EA, Chu SY. Optimizing engagement of the immune system by anti-tumor antibodies: an engineer's perspective. Drug Discov Today. 2007;12(21–22):898–910.

    PubMed  CAS  Google Scholar 

  95. Jefferis R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov. 2009;8(3):226–34.

    Article  PubMed  CAS  Google Scholar 

  96. Jefferis R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci. 2009;30(7):356–62.

    Article  PubMed  CAS  Google Scholar 

  97. Jefferis R. Glycosylation of antibody therapeutics: optimisation for purpose. Meth Mol Biol. 2009;483:223–38. Clifton, NJ.

    Article  CAS  Google Scholar 

  98. Niwa R, Hatanaka S, Shoji-Hosaka E, Sakurada M, Kobayashi Y, Uehara A, et al. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Clin Cancer Res. 2004;10(18 Pt 1):6248–55.

    Article  PubMed  CAS  Google Scholar 

  99. Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, et al. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res. 2004;64(6):2127–33.

    Article  PubMed  CAS  Google Scholar 

  100. Reed JL, Kolbeck R, Molfino N, Kozhich AA, Humbles AA, Erjefalt JS, et al. MEDI-563, a humanized anti-IL-5Ra antibody with enhanced effector function, induces reversible blood eosinopenia in mild asthmatics. J Allergy Clin Immunol. 2008;121(2):S47.

    Article  Google Scholar 

  101. Kenakin T. Pharmacological analysis of drug–receptor interaction. New York: Raven; 1993. p. 39–68.

    Google Scholar 

  102. Baeuerle PA, Kufer P, Bargou R. BiTE: teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther. 2009;11(1):22–30.

    PubMed  CAS  Google Scholar 

  103. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321(5891):974–7. New York, NY.

    Article  PubMed  CAS  Google Scholar 

  104. Argouges S, Wissing S, Brandl C, Prang N, Lutterbuese R, Kozhich A, et al. Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells. Leuk Res. 2009;33(3):465–73.

    Article  PubMed  CAS  Google Scholar 

  105. Kufer P, Lutterbuse R, Baeuerle PA. A revival of bispecific antibodies. Trends Biotechnol. 2004;22(5):238–44.

    Article  PubMed  CAS  Google Scholar 

  106. Gong Q, Ou Q, Ye S, Lee WP, Cornelius J, Diehl L, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol. 2005;174(2):817–26.

    PubMed  CAS  Google Scholar 

  107. Hammond SA, Lutterbuese R, Roff S, Lutterbuese P, Schlereth B, Bruckheimer E, et al. Selective targeting and potent control of tumor growth using an EphA2/CD3-bispecific single-chain antibody construct. Cancer Res. 2007;67(8):3927–35.

    Article  PubMed  CAS  Google Scholar 

  108. Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer. 2005;115(1):98–104.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

At the time of submission of this article, MT and HS were employed by AnaptysBio, Inc., and CF was employed by Takeda San Francisco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Tabrizi.

Additional information

Guest Editors: Cheryl Li, Pratap Singh, and Anjaneya Chimalakonda

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabrizi, M., Funelas, C. & Suria, H. Application of Quantitative Pharmacology in Development of Therapeutic Monoclonal Antibodies. AAPS J 12, 592–601 (2010). https://doi.org/10.1208/s12248-010-9220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-010-9220-2

KEY WORDS

Navigation