Skip to main content

Glycosylation of Antibody Therapeutics: Optimisation for Purpose

  • Protocol
Recombinant Proteins From Plants

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 483))

Summary

Recombinant antibody therapeutics represent a significant success story in terms of clinical benefit delivered and revenue (profit) generated within the biopharmaceutical industry. Additionally, it is estimated that ̃30% of new drugs likely to be licensed during the next decade will be based on antibody products. High volume production with the maintenance of structural and functional fidelity of these large biological molecules results in high “cost of goods” that can limit their availability to patients, due to the strain it puts on national and private health budgets. The challenge in reducing cost of goods is that each antibody is unique, both in structure and function. Optimal clinical efficacy will require engineering of antibody genes to deliver products with enhanced activities produced by cell lines engineered to deliver antibody homogeneous for pre-selected post-translational modifications, that is, protein structures and glycoforms. A “universal” production vehicle cannot meet these demands and several production mammalian cells are now available, alternatives to mammalian cell lines are also reaching maturity. Advances in downstream processing also need to be realised whilst chemical changes during processing and storage must be minimised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freeze, H.H. (2002) Human disorders in N- glycosylation and animal models. Bio-chim Biophys Acta 1573: 388–393.

    CAS  Google Scholar 

  2. Butler, M., Quelhas, D., Critchley, A.J., Carchon, H., Hebestreit, H.F., Hibbet, R.G., Vilarinho, L., Teles, E., Matthijs, G., Schollen, E., Argibay, P., Har vey, D.J., Dwek, R.A. and Rudd, P.M. (2003) Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 13: 601–622.

    Article  CAS  PubMed  Google Scholar 

  3. Axford, J.S., Cunnane, G., Fitzgerald, O., Bresnihan, B. and Frears, E.R. (2003) Rheumatic disease differentiation using immunoglobulin G sugar printing by high-density electrophoresis. J Rheumatol 12: 2540–2546.

    Google Scholar 

  4. Youings, A., Chang, S.C., Dwek, R.A. and Scragg, I.G. (1996) Site-specific glycosylation of human immunoglobulin G is altered in four rheumatoid arthritis patients. Bio-chem J 314: 621–630.

    Google Scholar 

  5. Holland, M., Yagi, H., Takahashi, N., Kato, K., Savage, C.O.S., Goodall, D.M. and Jefferis, R. (2006) Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA associated systemic vasculitis. Biochim Biophys Acta 1760: 669–677.

    CAS  PubMed  Google Scholar 

  6. Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M., Uchida, K., Anazawa, H., Satoh, M., Yama-saki, M., Hanai, N. and Shitara, K. (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglu-cosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278: 3466–3473.

    Article  CAS  PubMed  Google Scholar 

  7. Jefferis, R. (2005) Glycosylation of recom-binant antibody therapeutics. Biotechnol Prog 21: 11–16.

    Article  CAS  PubMed  Google Scholar 

  8. Gomord, V., Chamberlain, P., Jefferis, R. and Foye, L. (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol 23: 559–565.

    Article  CAS  PubMed  Google Scholar 

  9. Sinclair, A.M. and Elliott, S. (2005) Gly-coengineering: The effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94: 1626–1635.

    Article  CAS  PubMed  Google Scholar 

  10. Smalling, R., Foot, M., Molineux, G., Swanson, S.J. and Elliott, S. (2004) Drug- induced and antibody-mediated pure red cell aplasia: A review of literature and current knowledge. Biotechnol Annu Rev 10: 237–250.

    Article  CAS  PubMed  Google Scholar 

  11. Birch, J.R. and Racher, A.J. (2006) Antibody production. Adv Drug Deliv Rev 58: 671–685.

    Article  CAS  PubMed  Google Scholar 

  12. Mirik, G.R., Bradt, B.M., Denardo, S.J. and Denardo, G.L. (2004) A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging 48: 251–257.

    Google Scholar 

  13. Alete, D.E., Racher, A.J., Birch, J.R., Stans-field, S.H., James, D.C. and Smales, C.M. (2005) Proteomic analysis of enriched microsomal fractions from GS-NS0 murine myeloma cells with varying secreted recom- binant monoclonal antibody productivities. Proteomics 18: 4689–4704.

    Article  Google Scholar 

  14. Woof, J.M. and Burton, D.R. (2004) Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 4: 89–99.

    Article  CAS  PubMed  Google Scholar 

  15. Nezlin, R. and Ghetie, V. (2004) Interactions of immunoglobulins outside the antigen-combining site. Adv Immunol 82: 155–215.

    Article  CAS  PubMed  Google Scholar 

  16. Niwa, R., Natsume, A., Uehara, A., Wakitani, M., Iida, S., Uchidqa, K., Satoh, M. and Shitara, K. (2005) IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J Immunol Methods 306: 151–160.

    Article  CAS  PubMed  Google Scholar 

  17. Deisenhofer, J. (1981) Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20: 2361–2370.

    Article  CAS  PubMed  Google Scholar 

  18. van Sorge, N.M., van der Pol, W.L. and van de Winkel, J.G. (2003) FcgammaR polymorphisms: Implications for function, disease susceptibility and immunotherapy. Tissue Antigens 61: 189–202.

    Article  PubMed  Google Scholar 

  19. Nimmerjahn, F. and Ravetch, J.V. (2006) Fcgamma receptors: Old friends and new family members. Immunity 24: 19–28.

    Article  CAS  PubMed  Google Scholar 

  20. Ferrara, C., Brunker, P., Moser, S., Puntener, U. and Umana, P. (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: Influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Bio-technol Bioeng 93: 851–861.

    Article  CAS  Google Scholar 

  21. Mimura, Y., Sondermann, P., Ghirlando, R., Lund, J., Young, S.P., Goodall, M. and Jefferis, R. (2001) The role of oligosaccha-ride residues of IgG1-Fc in Fc γ IIb binding. J Biol Chem 276: 45539–45547.

    Article  CAS  PubMed  Google Scholar 

  22. Krapp, S., Mimura, Y., Jefferis, R., Huber, R. and Sondermann, P. (2003) Structural analysis of human IgG glycoforms reveals a correlation between oligosaccharide content, structural integrity and Fc γ -receptor affinity. J Mol Biol 325: 979–989.

    Article  CAS  PubMed  Google Scholar 

  23. Jef feris, R., Lund, J., Mizitani, H., Nakagawa, H., Kawazoe, Y., Arata, Y. and Takahashi, N. (1990) A comparative study of the N-linked oligosaccharide structures of human IgG subclass proteins. Biochem J 268: 529–537.

    CAS  PubMed  Google Scholar 

  24. Walsh, G. and Jefferis, R. (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24: 1241–1252.

    Article  CAS  PubMed  Google Scholar 

  25. Qian, J., Liu, T., Yang, L., Daus, A., Crowley, R. and Zhou, Q. (2007) Structural characterization of N-linked oligosaccha-rides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem 364: 8–18.

    Article  CAS  PubMed  Google Scholar 

  26. Huang, L., Biolosi, S., Bales, K.R. and Kuchibhotla, U. (2006) Impact of variable domain glycosylation on antibody clearance: An LC/MS characterization. Anal Biochem 349: 197–207.

    Article  CAS  PubMed  Google Scholar 

  27. Umana, P., Jean-Mairet, J., Moudr y, R., Amstutz, H. and Bailey, J.E. (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17: 176–180.

    Article  CAS  PubMed  Google Scholar 

  28. Davies, J., Jiang, L., LaBarre, M.J., Anderson, D. and Reff, M. (2001) Expression of GTIII in a recombinant anti-CD20 CHO production cell line: Expression of antibodies of altered glycoforms leads to an increase in ADCC thro' higher affinity for FcRIII. Biotechnol Bioeng 74: 288–294.

    Article  CAS  PubMed  Google Scholar 

  29. Shields, R.L., Lai, J., Keck, R., O'Connell, L.Y., Hong, K., Meng, Y.G., Weikert, S.H. and Presta, L.G. (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277: 26733–26740.

    Article  CAS  PubMed  Google Scholar 

  30. Ymane-Ohuki, N., Kinoshita, S., Inoue-Urakubo, M., Kusunoki, M., Iida, S., Nakano, P., Wakitani, M., Niwa, R., Sakurada, M., Uchida, K., Shitara, K. and Satoh, M. (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87: 614–622.

    Article  Google Scholar 

  31. Sondermann, P., Huber, R., Oosthui-zen, V. and Jacob, U. (2000) The 3.2-A crystal structure of the human IgG1 Fc fragment-Fc γ RIII complex. Nature 406: 267–273.

    Article  CAS  PubMed  Google Scholar 

  32. Radaev, S., Motyka, S., Fridman, W.H., Sautes-Fridman, C. and Sun, P.D. (2001) The structure of human type III Fc γ receptor in complex with Fc. J Biol Chem 276: 16469–16477.

    Article  CAS  PubMed  Google Scholar 

  33. Hinton, P.R., Xiong, J.M., Johlfs, M.G., Tang, M.T., Keller, S. and Tsurushita, N. (2006) An engineered human IgG1 antibody with longer serum half-life. J Immunol 176: 346–356.

    CAS  PubMed  Google Scholar 

  34. Dumont, J.A., Bitonti, A.J., Clark, D., Evans, S., Pickford, M. and Newman, S.P. (2005) Delivery of an erythropoietin-Fc fusion protein by inhalation in humans through an immunoglobulin transport pathway. J Aerosol Med 18: 294–303.

    Article  CAS  PubMed  Google Scholar 

  35. Lund, J., Takahashi, N., Pound, J., Goodall, M. and Jefferis, R. (1996) Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fc γ RI and influence the synthesis of its oligosaccharide chains. J Immunol 157: 4963–4969.

    CAS  PubMed  Google Scholar 

  36. Andersen, D.C. and Reilly, D.E. (2000b) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol 15: 456–462.

    Article  Google Scholar 

  37. Saint-Jore-Dupas, C., Faye, L. and Gomorod, V. (2007) From planta to pharma with glycosylation in the toolbox. Trends Biotechnol 25: 317–323.

    Article  CAS  PubMed  Google Scholar 

  38. Cox, K.M., Sterling, J.D., Regan, J.T., Gadaska, J.R., Frantz, K.K., Peele, C.G., Black, A., Passmore, D., Moldovan-Loomis, C., Srinivasan, M., Cuison, S., Cardarelli, P.M. and Dickey, L. (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Bio-technol 24: 1591–1597.

    Article  CAS  Google Scholar 

  39. Kaprivova, A., Stemmer, C., Altmann, F., Hoffmann, A., Kopriva, S., Gorr, G., Reski, R. and Decker, F.L. (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2: 517–523.

    Article  Google Scholar 

  40. Strasser, R., Altmann, F., Mach, L., Glossl, J. and Steinkellner, H. (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett 561: 132–136.

    Article  CAS  PubMed  Google Scholar 

  41. Hill, D.R., Aumiller, J.J., Shi, X. and Jarvis, D.L. (2006) Isolation and analysis of a baculovirus vector that supports recombinant glycoprotein sialylation by SfSWT-1 cells cultured in serum-free medium. Biotechnol Bioeng 95: 37–47.

    Article  CAS  PubMed  Google Scholar 

  42. Hamilton, S.R., Davidson, R.C., Sethura-man, N., Nett, J.H., Jiang, Y., Rios, S., Bobrowicz, P., Stadheim, T.A., Li, H., Choi, B.K., Hopkins, D., Wischenewski, H., Roser, J., Mitchell, T., Strawbridge, R.R., Hoopes, J., Wildt, S. and Gerngross, T.U. (2006) Humanization of yeast to produce complex terminally sialylated glyco-proteins. Science 313: 1441–1443.

    Article  CAS  PubMed  Google Scholar 

  43. Georgiou, G. and Segatori, L. (2005) Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol 16: 538–545.

    Article  CAS  PubMed  Google Scholar 

  44. Wacker, M., Feldman, M.F., Callwaert, N., Kowanik, M., Clarke, B.R., Pohl, N.L., Hernandez, M., Vines, E.D., Val-vano, M.A., Whitfield, C. and Aebi, M. (2006) Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl Acad Sci USA 103: 7088–7093.

    Article  CAS  PubMed  Google Scholar 

  45. Combe, C., Tredree, R.L. and Schellekens, H. (2005) Biosimilar epoetins: An analysis based on recently implemented European medicines evaluation agency guidelines on comparability of biopharmaceutical proteins. Pharmacotherapy 25: 954–962.

    Article  CAS  PubMed  Google Scholar 

  46. Jefferis, R. (2007) Antibody therapeutics: Isotype and glycoform selection. Expert Opin Biol Ther 7: 1401–1413.

    Article  CAS  PubMed  Google Scholar 

  47. Mimura, Y., Ashton, P.R., Takahashi, N., Harvey, D.J. and Jefferis, R. (2007) Contrasting glycosylation profiles between Fab and Fc of a human IgG protein studied by electrospray ionization mass spectrometry. J Immunol Methods 326: 116–126.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Roy, J. (2009). Glycosylation of Antibody Therapeutics: Optimisation for Purpose. In: Faye, L., Gomord, V. (eds) Recombinant Proteins From Plants. Methods in Molecular Biology™, vol 483. Humana Press. https://doi.org/10.1007/978-1-59745-407-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-407-0_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-978-9

  • Online ISBN: 978-1-59745-407-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics