Skip to main content
Log in

Designing and modeling doubly porous polymeric materials

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Doubly porous organic materials based on poly(2-hydroxyethyl methacrylate) are synthetized through the use of two distinct types of porogen templates, namely a macroporogen and a nanoporogen. Two complementary strategies are implemented by using either sodium chloride particles or fused poly(methyl methacrylate) beads as macroporogens, in conjunction with ethanol as a porogenic solvent. The porogen removal respectively allows for the generation of either non-interconnected or interconnected macropores with an average diameter of about 100–200 μm and nanopores with sizes lying within the 100 nm order of magnitude, as evidenced by mercury intrusion porosimetry and scanning electron microscopy. Nitrogen sorption measurements evidence the formation of materials with rather high specific surface areas, i.e. higher than 140 m2.g−1. This paper also addresses the development of numerical tools for computing the permeability of such doubly porous materials. Due to the coexistence of well separated scales between nanopores and macropores, a consecutive double homogenization approach is proposed. A nanoscopic scale and a mesoscopic scale are introduced, and the flow is evaluated by means of the Finite Element Method to determine the macroscopic permeability. At the nanoscopic scale, the flow is described by the Stokes equations with an adherence condition at the solid surface. At the mesoscopic scale, the flow obeys the Stokes equations in the macropores and the Darcy equation in the permeable polymer in order to account for the presence of the nanopores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker, Curr. Opin. Solid State Mater. Sci. 1, 798 (1996)

    Article  ADS  Google Scholar 

  2. R. Langer, J.P. Vacanti, Science 260, 920 (1993)

    Article  ADS  Google Scholar 

  3. L.S. Nair, C.T. Laurencin, Prog. Polym. Sci. 32, 762 (2007)

    Article  Google Scholar 

  4. M.R. Kreitz, J.A. Domm, E. Mathiowitz, Biomaterials 18, 1645 (1997)

    Article  Google Scholar 

  5. Y.Y. Yang, T.S. Chung, N.P. Ng, Biomaterials 22, 231 (2001)

    Article  Google Scholar 

  6. V.R. Patel, M.M. Amiji, Pharm. Res. 13, 588 (1996)

    Article  Google Scholar 

  7. S.H. Lee, H. Shin, Adv. Drug Delivery Rev. 59, 339 (2007)

    Article  Google Scholar 

  8. X.H. Liu, P.X. Ma, Ann. Biomed. Eng. 32, 477 (2004)

    Article  Google Scholar 

  9. V.A. Santamaria, H. Deplaine, D. Mariggio, A.R. Villanueva-Molines, J.M. Garcia-Aznar, J.L.G. Ribelles, M. Doblare, G.G. Ferrer, I. Ochoa, J. Non-Crystalline Solids 358, 3141 (2012)

    Article  ADS  Google Scholar 

  10. X.H. Liu, P.X. Ma, Biomaterials 30, 4094 (2009)

    Article  Google Scholar 

  11. Y.F. Yang, J. Zhao, Y.H. Zhao, L. Wen, X.Y. Yuan, Y.B. Fan, J. Appl. Polym. Sci. 109, 1232 (2008)

    Article  Google Scholar 

  12. S. Ghosh, J.C. Viana, R.L. Reis, J.F. Mano, J. Mater. Sci.-Mater. Med. 18, 185 (2007)

    Article  Google Scholar 

  13. D. Horak, H. Hlidkova, J. Hradil, M. Lapcikova, M. Slouf, Polymer 49, 2046 (2008)

    Article  Google Scholar 

  14. S. Kovacic, D. Stefanek, P. Krajnc, Macromolecules 40, 8056 (2007)

    Article  ADS  Google Scholar 

  15. O. Kulygin, M.S. Silverstein, Soft Matter. 3, 1525 (2007)

    Article  ADS  Google Scholar 

  16. N.R. Cameron, Polymer 46, 1439 (2005)

    Article  Google Scholar 

  17. M. Silverstein, Polymer 55, 304 (2014)

    Article  Google Scholar 

  18. J.L. Auriault, E. Sanchez-Palencia, J. Meca. 16, 575 (1977)

    MathSciNet  Google Scholar 

  19. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Vol. 127 (Springer, Berlin, 1980)

  20. S. Whitaker, AIChE J. 13, 420 (1967)

    Article  Google Scholar 

  21. A.S. Sangani, A. Acrivos, Int. J. Multiph. Flow 8, 343 (1982)

    Article  Google Scholar 

  22. A.S. Sangani, A. Acrivos, Int. J. Multiph. Flow 8, 193 (1982)

    Article  Google Scholar 

  23. C.Y. Wang, Int. J. Multiph. Flow 22, 185 (1996)

    Article  Google Scholar 

  24. C.Y. Wang, Fluid Dyn. Res. 29, 65 (2001)

    Article  ADS  Google Scholar 

  25. C.Y. Wang, Fluid Dyn. Res. 32, 233 (2003)

    Article  ADS  Google Scholar 

  26. J. Barrere, J.P. Caltagirone, O. Gipouloux, C.R. Acad. Sci. Serie II 310, 347 (1990)

    MathSciNet  Google Scholar 

  27. D. Cioranescu, P. Donato, H.I. Ene, Math. Meth. Appl. Sci. 19, 857 (1996)

    Article  MathSciNet  Google Scholar 

  28. F.J. Alcocer, V. Kumar, P. Singh, Phys. Rev. E 59, 711 (1999)

    Article  ADS  Google Scholar 

  29. F.J. Alcocer, P. Singh, Phys. Fluids 14, 2578 (2002)

    Article  ADS  Google Scholar 

  30. H. Moulinec, P. Suquet, C.R. Acad. Sci. Serie II 318, 1417 (1994)

    Google Scholar 

  31. J.C. Michel, H. Moulinec, P. Suquet, Int. J. Num. Meth. Eng. 52, 139 (2001)

    Article  Google Scholar 

  32. G. Bonnet, J. Mech. Phys. Solids 55, 881 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  33. V. Monchiet, G. Bonnet, Int. J. Num. Meth. Eng. 89, 1419 (2012)

    Article  MathSciNet  Google Scholar 

  34. V. Monchiet, G. Bonnet, G. Lauriat, C.R. Méca 337, 192 (2009)

    Article  ADS  Google Scholar 

  35. T.K. Nguyen, V. Monchiet, G. Bonnet, Eur. J. Mech. B-Fluids 37, 90 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Quintard, S. Whitaker, J. Meca. Theo. Appl. 6, 691 (1987)

    Google Scholar 

  37. J.L. Auriault, C. Boutin, Trans. Porous Media 7, 63 (1992)

    Article  Google Scholar 

  38. C. Boutin, P. Royer, J.L. Auriault, Int. J. Solids Struct. 35, 4709 (1998)

    Article  Google Scholar 

  39. T. Arbogast, D.S. Brunson, Comput. Geosci. 11, 207 (2007)

    Article  MathSciNet  Google Scholar 

  40. T. Levy, Int. J. Eng. Sci. 21, 11 (1983)

    Article  Google Scholar 

  41. G.S. Beavers, D. Joseph, J. Fluid Mech. 30, 197 (1967)

    Article  ADS  Google Scholar 

  42. P.G. Saffman, Stud. Appl. Math. 1, 93 (1971)

    Google Scholar 

  43. T. Arbogast, M.F. Wheeler, SIAM J. Numer. Anal. 42, 1914 (2005)

    Article  MathSciNet  Google Scholar 

  44. N.A. Peppas, Hydrogels in Medicine and Pharmacy (CRC Press, Boca Raton, FL, 1986)

  45. B. Le Droumaguet, R. Lacombe, H.B. Ly, M. Guerrouache, B. Carbonnier, D. Grande, Polymer 55, 373 (2014)

    Article  Google Scholar 

  46. B. Le Droumaguet, R. Lacombe, H.B. Ly, B. Carbonnier, D. Grande, Macromol. Symp. 304, 18 (2014)

    Google Scholar 

  47. U.J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan, Biomaterials 26, 2775 (2005)

    Article  Google Scholar 

  48. J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Mueller, L.G. Griffith, Tissue Eng. 7, 557 (2001)

    Article  Google Scholar 

  49. W.L. Murphy, R.G. Dennis, J.L. Kileny, D.J. Mooney, Tissue Eng. 8, 43 (2002)

    Article  Google Scholar 

  50. C.R. Kothapalli, M.T. Shaw, M. Wei, Acta Biomater 1, 653 (2005)

    Article  Google Scholar 

  51. S.M. LaNasa, I.T. Hoffecker, S.J. Bryant, J. Biomed. Mater. Res. Part B 96B, 294 (2011)

    Article  Google Scholar 

  52. R.B. Diego, M.P. Olmedilla, A.S. Aroca, J.L.G. Ribelles, M.M. Pradas, G.G. Ferrer, M.S. Sanchez, J. Mater. Sci. 40, 4881 (2005)

    Article  ADS  Google Scholar 

  53. S. Blacher, V. Maquet, R. Pirard, J.P. Pirard, R. Jérôme, Colloid Surf. A-Physicochem. Eng. Asp. 187, 375 (2001)

    Article  Google Scholar 

  54. J.E. Drummond, M.I. Tahir, Int. J. Multiphase Flow 10, 515 (1984)

    Article  Google Scholar 

  55. R.E. Larson, J.J.L. Higdon, J. Fluid Mech. 166, 449 (1986)

    Article  ADS  Google Scholar 

  56. R.E. Larson, J.J.L. Higdon, J. Fluid Mech. 178, 119 (1987)

    Article  ADS  Google Scholar 

  57. E.M. Sparrow, A.L. Loeffler, AIChE J. 5, 325 (1959)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ly, HB., Le Droumaguet, B., Monchiet, V. et al. Designing and modeling doubly porous polymeric materials. Eur. Phys. J. Spec. Top. 224, 1689–1706 (2015). https://doi.org/10.1140/epjst/e2015-02491-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02491-x

Keywords

Navigation