Skip to main content
Log in

The Modified VFT law of glass former materials under pressure: Part II: Relation with the equation of state

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The dynamical properties of glass formers (GFs) as a function of P, V, and T are reanalyzed in relation with the equations of state (EOS) proposed recently (Eur. Phys. J. E 37, 113 (2014)). The relaxation times τ of the cooperative non-Arrhenius α process and the individual Arrhenius β process are coupled via the Kohlrausch exponent n S(T, P). In the model n S is the sigmoidal logistic function depending on T (and P, and the α relaxation time τ α of GFs above T g verifies the pressure-modified VFT law: log τ α E β /nsRT, which can be put into a form with separated variables: log τ α f(T)g(P). From the variation of n S and τ α with T and P the Vogel temperature T 0 (τ α → ∝, n S = 0) and the crossover temperature (also called the merging or splitting temperature) T B (τ ατ β, n S ∼ 1) are determined. The proposed sm-VFT equation fits with excellent accuracy the experimental data of fragile and strong GFs under pressure. The properties generally observed in organic mineral and metallic GFs are explained: a) The Vogel temperature is independent of P (as suggested by the EOS properties), the crossover is pressure-dependent. b) In crystallizable GFs the T B (P) and Clapeyron curves T m(P) coincide. c) The α and β processes have the same ratio of the activation energies and volume, E*/V* (T- and P-independent), the compensation law is observed, this ratio depends on the anharmonicity Slater-Grüneisen parameter and on the critical pressure P* deduced from the EOS. d) The properties of the Fan Structure of the Tangents (FST) to the isotherms and isobars curves log τ versus P and T and to the isochrones curves P(T). e) The scaling law log τ = f(V Λ) and the relation between Γ and γ. We conclude that these properties should be studied in detail in GFs submitted to negative pressures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Vogel, Phys. Z 22, 645 (1921).

    Google Scholar 

  2. G.S. Fulcher, J. Am. Chem. Soc. 8, 339 (1925).

    Google Scholar 

  3. G.S. Fulcher, J. Am. Chem. Soc. 8, 789 (1925).

    Google Scholar 

  4. E. Donth, The Glass Transition (Springer, Berlin, 2001).

  5. A.L. Kovarskii, High-Pressure Chemistry and Physics of Polymers (CRC Press, Boca Raton, 1993).

  6. K.L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, 2011).

  7. F, Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer Verlag, Berlin, 2002).

  8. C. Hansen, F. Stickel, T. Berger, R. Richert, E.W. Fischer, J. Chem. Phys. 107, 1086 (1997).

    Article  ADS  Google Scholar 

  9. G.P. Johari, E. Walley, Faraday Symp. Chem. Soc. 6, 23 (1972).

    Article  Google Scholar 

  10. C.M. Roland, S. Hensel-Bielowska, M. Paluch, R. Casalini, Rep. Prog. Phys. 68, 1405 (2005).

    Article  ADS  Google Scholar 

  11. J. Rault, Eur. Phys. J. E 37, 113 (2014).

    Article  Google Scholar 

  12. J.C. Slatter, Introduction to Chemical Physics (McGraw-Hill, New York, 1939).

  13. J. Rault, Non-Cryst. Solids 260, 164 (1999).

    Article  ADS  Google Scholar 

  14. J. Rault, Non-Cryst. Solids 271, 177 (2000).

    Article  ADS  Google Scholar 

  15. J. Rault, Eur. Phys. J. E 35, 26 (2012).

    Article  Google Scholar 

  16. J. Rault, Physical Aging of Glasses: the VFT approach (Nova Science Publishers, New York, 2009).

  17. J. Rault, J. Phys.: Condens. Matter 15, S1193 (2003).

    ADS  Google Scholar 

  18. C.A. Angell, J. Non-Cryst. Solids 131-133, 13 (1991).

    Article  ADS  Google Scholar 

  19. R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993).

    Article  ADS  Google Scholar 

  20. J. Rault, J. Non-Cryst. Solids 357, 339 (2011).

    Article  ADS  Google Scholar 

  21. S. Kahle, J. Gapinski, G. Hinze, A. Patkowski, G. Meier, J. Chem. Phys. 122, 074506 (2005).

    Article  ADS  Google Scholar 

  22. L. Wu, Phys. Rev. B 43, 9906 (1991).

    Article  ADS  Google Scholar 

  23. L. Wu, S.R. Nagel, Phys. Rev. B 46, 11198 (1992).

    Article  ADS  Google Scholar 

  24. E. Donth, K. Schröter, S. Kahle, Phys. Rev. E 60, 1099 (1999).

    Article  ADS  Google Scholar 

  25. V.A. Bershtein, V.M. Egorov, Differential Scanning Calorimetry of Polymers (Ellis Horwoood, Chischester, UK, 1994).

  26. S.S.N. Murthy, J. Polym. Sci. B 31, 475 (1993).

    Article  Google Scholar 

  27. F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 102, 625 (1995).

    Article  Google Scholar 

  28. F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 104, 2043 (1996).

    Article  ADS  Google Scholar 

  29. G. Fytas, Th. Dorfmüller, C.H. Wang, J. Phys. Chem. 87, 5041 (1983).

    Article  Google Scholar 

  30. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  ADS  Google Scholar 

  31. I. Avramov, J. Non-Cryst. Solids 262, 258 (2000).

    Article  ADS  Google Scholar 

  32. M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164 (1959).

    Article  ADS  Google Scholar 

  33. M.H. Cohen, G.S. Grest, J. Non-Cryst. Solids 61-62, 749 (1984).

    Article  ADS  Google Scholar 

  34. T. Paluka, J. Mol. Liq. 86, 109 (2000).

    Article  Google Scholar 

  35. H.B. Yu, W.H. Wang, K. Samwer, Mater. Today 16, 183 (2013).

    Article  Google Scholar 

  36. Z.F. Zhao, P. Wen, C.H. Shek, W.H. Wang, Phys. Rev. B 75, 174201 (2007).

    Article  ADS  Google Scholar 

  37. C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).

    Article  ADS  Google Scholar 

  38. K.L. Ngai, J. Chem, Phys. 109, 6982 (1998).

    Article  ADS  Google Scholar 

  39. A. Alegria, J. Colmenero, P.O. Mari, A. Campbell, Phys. Rev. E 59, 6888 (1999).

    Article  ADS  Google Scholar 

  40. W. Steffen, A. Patkowski, H. Glaser, G. Meier, E.W. Fischer, Phys. Rev. E 49, 2992 (1994).

    Article  ADS  Google Scholar 

  41. C. Dreyfus, A. Aouadi, J. Gapinski, M. Matos-Lopes, W. Steffen, A. Patkowski, R.M. Pick, Phys. Rev. E 68, 011204 (2003).

    Article  ADS  Google Scholar 

  42. P.B. Macedo, C.J. Montrose, C.T. Moynihan, C.C. Lai, Mat. Sci. Res. 12, 463 (1978).

    Google Scholar 

  43. F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 104, 2043 (1996).

    Article  ADS  Google Scholar 

  44. D.B. Dingwell, R. Knoche, S.L. Webb, M. Pichavant, Am. Mineral. 77, 457 (1992).

    Google Scholar 

  45. P.B. Macedo, A. Napolitano, J. Chem. Phys. 49, 1887 (1968).

    Article  ADS  Google Scholar 

  46. R.H. Doremus, J. Appl. Phys. 92, 7619 (2002).

    Article  ADS  Google Scholar 

  47. M.I. Ojovan, W.E. Lee, J. Appl. Phys. 95, 3803 (2004).

    Article  ADS  Google Scholar 

  48. R.K. Eby, J. Chem. Phys. 37, 2785 (1962).

    Article  ADS  Google Scholar 

  49. M. Naoki, H. Endou, K. Matsumoto, J. Phys. Chem. 91, 4169 (1987).

    Article  Google Scholar 

  50. M. Naoki, M. Mattsushita, Bull. Chem. Soc. Jpn. 56, 2396 (1983).

    Article  Google Scholar 

  51. A. Drozd-Rzoska, S.J. Rzoska, A.R. Imre, J. Non-Cryst. Solids 353, 3915 (2007).

    Article  ADS  Google Scholar 

  52. R.L. Cook, H.E. King, Jr., Ch.A. Herbst, D.R. Herschbach, J. Chem. Phys. 100, 5178 (1994).

    Article  ADS  Google Scholar 

  53. M. Paluch, C.M. Roland, J. Gapinski, A. Patkowski, J. Chem. Phys. 118, 3177 (2003).

    Article  ADS  Google Scholar 

  54. S. Capaccioli, S. Corezzi, G. Gallone, P.A. Rolle, L. Cez, D. Fioretto, J. Non-Cryst. Solids 235-237, 576 (1998).

    Article  ADS  Google Scholar 

  55. R. Casalini, M. Paluch, C.M. Roland, J. Chem. Phys. 118, 5701 (2003).

    Article  ADS  Google Scholar 

  56. M. Paluch, S. Hensel-Bielowka, T. Psurek, J. Chem. Phys. 113, 4374 (2000).

    Article  ADS  Google Scholar 

  57. M. Paluch, S.J. Rzoska, P. Habdas, J. Ziolo, J. Phys.: Condens. Matter 10, 4131 (1998).

    ADS  Google Scholar 

  58. H. Forsman, P. Anderson, Backström, J. Chem. Soc. Faraday Soc. 82, 857 (1986).

    Article  Google Scholar 

  59. T. Psurek, S. Hensel-Bielowska, J. Zolo, M. Paluch, J. Chem. Phys. 116, 9882 (2002).

    Article  ADS  Google Scholar 

  60. S.H. Zhang, R. Casalini, J. Runt, C.M. Roland, Macromolecules 36, 9917 (2003).

    Article  ADS  Google Scholar 

  61. C. Roland, T. Psurek, S. Pawlus, M. Paluch, Polym. Sci. Part B 41, 3047 (2003).

    Article  Google Scholar 

  62. R. Casalini, C.M. Roland, J. Chem. Phys. 119, 4052 (2003).

    Article  ADS  Google Scholar 

  63. J. Gapinski, M. Paluch, A. Patkowski, Phys. Rev. E 66, 011501 (2002).

    Article  ADS  Google Scholar 

  64. M. Paluch, C.M. Roland, S. Pawlus, J. Chem, Phys. 116, 10932 (2002).

    Article  ADS  Google Scholar 

  65. M. Paluch, S. Pawlus, C.M. Roland, Macromolecules 35, 7338 (2002).

    Article  ADS  Google Scholar 

  66. K.U. Schug, H. King, R. Böhmer, J. Chem, Phys. 109, 1472 (1998).

    Article  ADS  Google Scholar 

  67. R.W. Haward, The Physics of Glassy Polymers, Chap. 5 (Applied Science Publishers, London, 1973). .

  68. C. Bauwens-Crowet, J.C. Bauwens, G. Homes, J. Polym. Sci. Part 4-2 7, 176 (1969).

    Google Scholar 

  69. J. Richmont, S. Ahzi, K.S. Vecchio, F.C. Jiang, R.R. Adharapurapu, Int. J. Solids Struct. 43, 2318 (2006).

    Article  Google Scholar 

  70. J. Rault, J. Non-Cryst. Solids 235-237, 737 (1998).

    Article  ADS  Google Scholar 

  71. M. Paluch, R. Casalini, C.M. Roland, Phys. Rev. B 66, 092202 (2002).

    Article  ADS  Google Scholar 

  72. A. Grzybowski, K. Koperwas, M. Paluch, Phys. Rev. E 86, 031501 (2012).

    Article  ADS  Google Scholar 

  73. R. Casalini, U. Mohanty, C.M. Roland, J. Chem. Phys. 125, 014505 (2006).

    Article  ADS  Google Scholar 

  74. A.A. Pronin, M.V. Kondrin, A.G. Lyapin, V.V. Brazhkin, A.A. Volkov, P. Lunkenheimer, A. Loidl, Phys. Rev. E 81, 041503 (2010).

    Article  ADS  Google Scholar 

  75. R. Casalini, C.M. Roland, Phys. Rev. Lett. 92, 245702 (2004).

    Article  ADS  Google Scholar 

  76. M. Naoki, S. Kodea, J. Phys. Chem. 93, 948 (1989).

    Article  Google Scholar 

  77. D. Fragiadakis, M.C. Roland, J. Phys. Rev. E 83, 031504 (2011).

    Article  ADS  Google Scholar 

  78. N. Gnan, T.B. Schroder, U.R. Pedersen, N.P. Bailey, J.C. Dyre, J. Chem. Phys. 131, 234504 (2009).

    Article  ADS  Google Scholar 

  79. M. Naoki, M. Matsushita, Bull. Chem. Soc. Jpn. 56, 2396 (1983).

    Article  Google Scholar 

  80. L.L. Speery, J.D. Mackenzie, Phys. Chem. Glass 9, 91 (1968).

    Google Scholar 

  81. A.R. Imre, Phys. Status Solidi. 244, 893 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Rault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rault, J. The Modified VFT law of glass former materials under pressure: Part II: Relation with the equation of state. Eur. Phys. J. E 38, 91 (2015). https://doi.org/10.1140/epje/i2015-15091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15091-6

Keywords

Navigation