Skip to main content
Log in

Thermodynamics of membrane elasticity – A molecular level approach to one- and two-component fluid amphiphilic membranes, Part I: Theory

  • Regular Articles
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The present publication provides a detailed theoretical approach to the elastic properties of one- and two-component amphiphilic membranes. It is formulated in terms of the molecular free energy aiming at an application to molecular models. The work focuses on the bending elastic moduli and the difference between the condition of constant surface tension and constant chemical potentials. It is found that the bending modulus of mean curvature becomes negative for two-component membranes approaching the limit of phase separation at constant chemical potentials. The treatment of bilayer membranes explicitly integrates monolayer-monolayer coupling. This is beneficial for the assessment of coupling effects for specific molecular models. The article is completed by a comprehensive continuum mechanical description of one-component monolayers. Based on the generalized Laplace equation it is suggested that a simultaneous excess of oil and water is likely to preclude the existence of non-cylindrical bicontinuous phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Y. Aota-Nakano, S.J. Li, M. Yamazaki, Biochim. Biophys. Acta 1461, 96 (1999)

    Google Scholar 

  • M. Bergström, Langmuir 17, 7675 (2001)

    Google Scholar 

  • E.M. Blokhuis, H.N.W. Lekkerkerker, I. Szleifer, J. Chem. Phys. 112(13), 6023 (2000)

    Google Scholar 

  • F.P. Buff, J. Chem. Phys. 25, 146 (1955)

    MathSciNet  Google Scholar 

  • P.B. Canham, J. Theoret. Biol. 26, 61 (1970)

    Google Scholar 

  • G. Cevc, D. Gebauer, J. Stieber, A. Schatzlein, G. Blume, Biochim. Biophys. Acta 1368, 201 (1998)

    Google Scholar 

  • J. Charvolin, J.F. Sadoc, Films of Amphiphiles and Minimal Surfaces, in The Structure and Conformation of Amphiphilic Molecules, edited by R. Lipowsky, D. Richter, K. Kremer (Springer, 1991), pp. 234–243

  • P. Chen, S.S. Susnar, M. Pasandideh-Fard, J. Mostaghimi, A.W. Neumann, Adv. Coll. Int. Sci. 63, 179 (1996)

    Google Scholar 

  • M. Daoud, Soft Matter Physics (Springer, 1999)

  • H.T. Davis, Statistical mechanics of phases, interfaces, and thin films (VCH Publishers, 1996)

  • M. doCarmo, Differentialgeometrie von Kurven und Flächen (Vieweg, 1983)

  • E. Evans, Biophys. J. 14, 923 (1974)

    Google Scholar 

  • L. Foret, A. Würger, Phys. Rev. Lett. 86(26), 5930 (2001)

    Google Scholar 

  • J.-B. Fournier, Europhys. Lett. 43(6), 725 (1998)

    MathSciNet  Google Scholar 

  • G. Gompper, Self-Assembling Amphiphilic Systems (Academic Press, 1994)

  • W. Greiner, L. Neise, H. Stöcker, Thermodynamik und Statistische Mechanik (Harri Deutsch, 1993)

  • M. Hamm, M.M. Kozlov, Eur. Phys. J. B 6, 519 (1998)

    ADS  Google Scholar 

  • W. Helfrich, Z. Naturforsch c 28, 693 (1973)

    Google Scholar 

  • W. Helfrich, Amphiphilic Mesophases Made of Defects, in Physics of Defects, Les Houches Session XXXV, edited by R. Balian (North Holland, 1981), pp. 713–755

  • W. Helfrich, Elasticity and Thermal Undulations of Fluid Films of Amphiphiles, in Liquids at Interfaces, Les Houches Session XLVIII, edited by J. Charvolin, J.F. Joanny, J. Zinn-Justin (Elsevier, 1990), pp. 209–237

  • W. Helfrich, Bending Elasticity of Fluid Membranes, in Giant Vesicles, edited by P.L. Luisi, P. Walde (Wiley, 2000), pp. 51–70

  • W. Helfrich, M.M. Kozlov, J. Phys. II France 3, 287 (1993)

    Google Scholar 

  • T.L. Hill, Statistical Thermodynamics (Dover, 1986)

  • M. Hoffmann, Thermodynamik amphiphiler Membranen unter Verwendung molekularer Modelle, Ph.D. thesis, Friedrich-Schiller-Universität Jena, Germany, http://www.db-thueringen.de, 2002

  • M. Hoffmann, Eur. Phys. J. E 16, 125 (2005)

    Google Scholar 

  • J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, 1991)

  • F. Jähnig, K. Harlos, H. Vogel, H. Eibl, Biochemistry 18(8), 1459 (1979)

    Google Scholar 

  • H. Kellay, B.P. Binks, Y. Hendrikx, L.T. Lee, J. Meunier, Adv. Coll. Int. Sci. 49, 85 (1994)

    Google Scholar 

  • M.M. Kozlov, S.L. Leikin, V.S. Markin, J. Chem. Soc. Faraday Trans. 2 85(4), 277 (1989)

    Google Scholar 

  • M.M. Kozlov, V.S. Markin, J. Chem. Soc. Faraday Trans. 2 85(4), 261 (1989)

    Google Scholar 

  • M.M. Kozlov, M. Winterhalter, J. Phys. II France 1, 1077 (1991)

    Google Scholar 

  • O. Lade, A. Krawietz, J. Chem. Phys. 115(23), 10986 (2001)

    Google Scholar 

  • L.D. Landau, E.M. Lifschitz, Elastizitätstheorie (Akademie Verlag, 1991)

  • L.D. Landau, E.M. Lifschitz, Klassische Feldtheorie (Akademie Verlag, 1991)

  • Structure and Dynamics of Membranes, edited by R. Lipowsky, E. Sackmann (Elsevier, 1995)

  • S. Ljunggren, J.C. Eriksson, P.A. Kralchevsky, J. Coll. Int. Sci. 191, 424 (1997)

    Google Scholar 

  • S. May, J. Chem. Phys. 105(18), 8314 (1996)

    Google Scholar 

  • S. May, Elastische Eigenschaften mehrkomponentiger und geladener amphiphiler Membranen, Ph.D. thesis, Friedrich-Schiller-Universität Jena, Germany, 1996

  • S. May, Eur. Biophys. J. 29, 17 (2000)

    Google Scholar 

  • S. May, A. Ben-Shaul, J. Chem. Phys. 103(9), 3839 (1995)

    Google Scholar 

  • J.C. Melrose, Indust. Eng. Chem. 60(3), 53 (1968)

    Google Scholar 

  • S.M. Oversteegen, F.A.M. Leermakers, Phys. Rev. E 62, 8453 (2000)

    ADS  Google Scholar 

  • G. Porte, J. Appell, P. Bassereau, J. Marignan, J. Phys. France 50, 1335 (1989)

    Google Scholar 

  • G. Porte, C. Ligoure, J. Chem. Phys. 102(10), 4290 (1995)

    Google Scholar 

  • F. Richter, Frank Richter, EMBL outstation at Desy Hamburg, personal communication, unpublished data, 2001

  • C.R. Safinya, E.B. Sirota, D. Roux, G.S. Smith, Phys. Rev. Lett. 62, 1134 (1989)

    ADS  Google Scholar 

  • A.S. Safran, Statistical Thermodynamics of Surfaces, Interfaces and Membranes (Addison-Wesley, 1994)

  • S.A. Safran, Adv. Phys. 48(4), 395 (1999)

    Google Scholar 

  • S.A. Safran, P. Pincus, D. Andelmann, Science 248, 354 (1990)

    ADS  Google Scholar 

  • S.A. Safran, P.A. Pincus, D. Andelmann, F.C. MacKintosh, Phys. Rev. A 43(2), 1071 (1991)

    Google Scholar 

  • S.A. Safran, M.O. Robbins, S. Garoff, Phys. Rev. A 33(3), 2186 (1986)

    Google Scholar 

  • U.S. Schwarz, G. Gompper, Phys. Rev. E 59(5), 5528 (1999)

    Google Scholar 

  • U. Seifert, Adv. Phys. 46(1), 13 (1997)

    Google Scholar 

  • U. Seifert, S.A. Langer, Europhys. Lett. 23, 71 (1993)

    ADS  Google Scholar 

  • I. Szleifer, D. Kramer, A. Ben-Shaul, W.M. Gelbart, S.A. Safran, J. Chem. Phys. 92(11), 6800 (1990)

    Google Scholar 

  • Y.S. Tarahovsky, A.L. Arsenault, R.C. MacDonald, T.J. McIntosh, R.M. Epand, Biophys. J. 79, 3193 (2000)

    Article  Google Scholar 

  • M. Winterhalter, W. Helfrich, J. Chem. Phys. 96, 327 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, M. Thermodynamics of membrane elasticity – A molecular level approach to one- and two-component fluid amphiphilic membranes, Part I: Theory. Eur. Phys. J. E 16, 111–123 (2005). https://doi.org/10.1140/epje/e2005-00013-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2005-00013-2

Keywords

Navigation