Skip to main content

Preparation of Drug Liposomes by Thin-Film Hydration and Homogenization

  • Living reference work entry
  • First Online:
Liposome-Based Drug Delivery Systems

Part of the book series: Biomaterial Engineering ((BIOENG))

Abstract

Among the methods for liposome preparation, thin-film hydration is one of the most commonly used methods, which will produce heterogeneous multilamellar vesicles (MLVs). Depending on this process, two types of model molecules, including lipophilic drugs and hydrophilic cargoes, have been mainly reported to be incorporated into liposome. The former can be dissolved together with the lipids prior to the formation of thin film, and the latter, such as oligonucleotide-based hydrophilic ingredients, can be dissolved in the hydration mediums, and then passively incorporated into liposomes via hydration procedure. Following the operation of thin-film hydration, two homogenization methods, sonication and extrusion, have been most usually applied to generate liposomes with optimal size and polydispersity, large unilamellar vesicles (LUVs) or small unilamellar vesicles (SUVs). Here, we initially introduce the thin-film hydration and homogenization, and describe the preparation methods for liposomal products entrapping two types of various cargoes above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bangham AD (1968) Membrane models with phospholipids. Prog Biophys Mol Biol 18:29–95

    Article  Google Scholar 

  • Begum M, Abbulu K, Sudhakar M (2012) Flurbiprofen-loaded stealth liposomes: studies on the development, characterization, pharmacokinetics, and biodistribution. J Young Pharm 4(4):209–219

    Article  Google Scholar 

  • Buyens K, Demeester J, De Smedt SS, Sanders NN (2009) Elucidating the encapsulation of short interfering RNA in PEGylated cationic liposomes. Langmuir 25(9):4886–4891

    Article  Google Scholar 

  • Chang M, Lu S, Zhang F, Zuo T, Guan Y, Wei T, Shao W, Lin G (2015) RGD-modified pH-sensitive liposomes for docetaxel tumor targeting. Colloids Surf B: Biointerfaces 129:175–182

    Article  Google Scholar 

  • Chen J, Ping QN, Guo JX, Chu XZ, Song MM (2006) Effect of phospholipid composition on characterization of liposomes containing 9-nitrocamptothecin. Drug Dev Ind Pharm 32(6):719–726

    Article  Google Scholar 

  • Chen Y, Lu Y, Chen J, Lai J, Sun J, Hu F, Enhanced WW (2009) bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 376(1-2):153–160

    Article  Google Scholar 

  • Chen CW, DW L, Yeh MK, Shiau CY, Chiang CH (2011) Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int J Nanomedicine 6:2567–2580

    Article  Google Scholar 

  • Chen CW, Yeh MK, Shiau CY, Chiang CH, Efficient LDW (2013) downregulation of VEGF in retinal pigment epithelial cells by integrin ligand-labeled liposome-mediated siRNA delivery. Int J Nanomedicine 8:2613–2627

    Google Scholar 

  • Douroumis D, Fahr A (2013) Drug delivery strategies for poorly water-soluble drugs. Wiley, New York, 37 p

    Book  Google Scholar 

  • Habib L, Jraij A, Khreich N, Fessi H, Charcosset C, Greige-Gerges H (2014) Morphological and physicochemical characterization of liposomes loading cucurbitacin E, an anti-proliferative natural tetracyclic triterpene. Chem Phys Lipids 177:64–70

    Article  Google Scholar 

  • Handel T (2005) Methods in enzymology. Elsevier, Netherlands, 97 p

    Google Scholar 

  • Hatziantoniou S, Dimas K, Georgopoulos A, Sotiriadou N, Demetzos C (2006) Cytotoxic and antitumor activity of liposome-incorporated sclareol against cancer cell lines and human colon cancer xenografts. Pharmacol Res 53(1):80–87

    Article  Google Scholar 

  • Hope MJ, Bally MB, Webb G, Cullis PR (1985) Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta 812(1):55–65

    Article  Google Scholar 

  • Jangde R, Singh D (2014) Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artif Cells Nanomed Biotechnol 44(2):635–641

    Article  Google Scholar 

  • Kan P, Tsao CW, Wang AJ, Su WC, Liang HF (2011) A liposomal formulation able to incorporate a high content of Paclitaxel and exert promising anticancer effect. J Drug Deliv 2011:629234

    Article  Google Scholar 

  • Kumar MR, Aithal BK, Udupa N, Reddy MS, Raakesh V, Murthy RS, Raju DP, Rao BS (2011) Formulation of plumbagin loaded long circulating pegylated liposomes: in vivo evaluation in C57BL/6J mice bearing B16F1 melanoma. Drug Deliv 18(7):511–522

    Article  Google Scholar 

  • Luo LM, Huang Y, Zhao BX, Zhao X, Duan Y, Du R, KF Y, Song P, Zhao Y, Zhang X, Zhang Q (2013) Anti-tumor and anti-angiogenic effect of metronomic cyclic NGR-modified liposomes containing paclitaxel. Biomaterials 34(4):1102–1114

    Article  Google Scholar 

  • Magotoshi M, Samir SA, Noriaki T (1983) Size and permeability of liposomes extruded through polycarbonate membranes. Int J Pharm 17(2-3):215–224

    Article  Google Scholar 

  • Manjappa AS, Goel PN, Vekataraju MP, Rajesh KS, Makwana K, Ukawala M, Nikam Y, Gude RP, Murthy RSI (2013) an alternative drug delivery system needed for docetaxel? The role of controlling epimerization in formulations and beyond. Pharm Res 30(10):2675–2693

    Article  Google Scholar 

  • Mattheolabakis G, Nie T, Constantinides PP, Rigas B (2012) Sterically stabilized liposomes incorporating the novel anticancer agent phospho-ibuprofen (MDC-917): preparation, characterization, and in vitro/in vivo evaluation. Pharm Res 29(6):1435–1443

    Article  Google Scholar 

  • Mikhaylova M, Stasinopoulos I, Kato Y, Artemov D, Bhujwalla ZM (2009) Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA. Cancer Gene Ther 16(3):217–226

    Google Scholar 

  • Olson F, Hunt CA, Szoka FC, Vail WJ, Papahadjopoulos D (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 557(1):9–23

    Article  Google Scholar 

  • Ramana LN, Sethuraman S, Ranga U, Krishnan UM (2010) Development of a liposomal nanodelivery system for nevirapine. J Biomed Sci 17:57

    Article  Google Scholar 

  • Ranade V, Hollinger M (2005) Drug delivery systems, 2nd edn. CRC, Florida, 3 p

    Google Scholar 

  • Sezer A (2012) Recent advances in novel drug carrier systems. Croatia, InTech, 69 p

    Book  Google Scholar 

  • Shavi GV, Sreenivasa Reddy M, Raghavendra R, Nayak UY, Kumar AR, Deshpande PB, Udupa N, Behl G, Dave V, Kushwaha K (2016) PEGylated liposomes of anastrozole for long-term treatment of breast cancer: in vitro and in vivo evaluation. J Liposome Res 26(1):28–46

    Article  Google Scholar 

  • Sims RPA, Larose JAG (1962) The use of iodine vapor as a general detecting agent in the thin layer chromatography of lipids. J Am Oil Chem Soc 39(4):232

    Article  Google Scholar 

  • Thassu D, Deleers M, Pathak Y (2007) Nanoparticulate drug delivery systems. Informa, New York, 89 p

    Book  Google Scholar 

  • Umrethia M, Ghosh PK, Majithya R, Murthy RS (2007) 6-mercaptopurine (6-MP) entrapped stealth liposomes for improvement of leukemic treatment without hepatotoxicity and nephrotoxicity. Cancer Investig 25(2):117–123

    Article  Google Scholar 

  • Vanaja K, Wahl MA, Bukarica L, Heinle H (2013) Liposomes as carriers of the lipid soluble antioxidant resveratrol: evaluation of amelioration of oxidative stress by additional antioxidant vitamin. Life Sci 93(24):917–923

    Article  Google Scholar 

  • Wang G (2005) Liposomes as drug delivery vehicles. Wiley, New York, 411 p

    Book  Google Scholar 

  • Wang XB, Guan QG, Chen W, Hu XM, Li L (2015) Novel nanoliposomal delivery system for polydatin: preparation, characterization, and in vivo evaluation. Drug Des Develop Ther 9:1805–1813

    Google Scholar 

  • Weissig V (2010a) Liposomes, methods in molecular biology. Springer, New York, 29 p

    Google Scholar 

  • Weissig V (2010b) Liposomes, methods in molecular biology. Springer, New York, 445 p

    Google Scholar 

  • Xiang B, Dong DW, Shi NQ, Gao W, Yang ZZ, Cui Y, Cao DY, Qi XR (2013) PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials 34(28):6976–6991

    Article  Google Scholar 

  • Xu Y, Meng H (2016) Paclitaxel-loaded stealth liposomes: development, characterization, pharmacokinetics, and biodistribution. Artif Cells Nanomed Biotechnol 44(1):350–355

    Article  Google Scholar 

  • Zhai G, Wu J, Yu B, Guo C, Yang X, Lee RJA (2010) transferrin receptor-targeted liposomal formulation for docetaxel. J Nanosci Nanotechnol 10(8):5129–5136

    Article  Google Scholar 

  • Zhang C, Tang N, Liu X, Liang W, Xu W, Torchilin VP (2006) siRNA-containing liposomes modified with polyarginine effectively silence the targeted gene. J Control Release 112(2):229–239

    Article  Google Scholar 

  • Zhang H, Gong W, Wang ZY, Yuan SJ, Xie XY, Yang YF, Yang Y, Wang SS, Yang DX, Xuan ZX, Mei XG (2014) Preparation, characterization, and pharmacodynamics of thermosensitive liposomes containing docetaxel. J Pharm Sci 103(7):2177–2183

    Article  Google Scholar 

  • Zuckerman JE, Davis ME (2015) Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov 14(12):843–856

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Xiang, B., Cao, DY. (2018). Preparation of Drug Liposomes by Thin-Film Hydration and Homogenization. In: Lu, WL., Qi, XR. (eds) Liposome-Based Drug Delivery Systems. Biomaterial Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49231-4_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49231-4_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49231-4

  • Online ISBN: 978-3-662-49231-4

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics