Skip to main content
Log in

Rheological and molecular dynamics simulation studies of the gelation of human serum albumin in anionic and cationic surfactants

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We report the gelation of human serum albumin (HSA) of 5–12 wt% concentrations in 0–0.15 M aqueous solutions of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), or an anionic surfactant, sodium dodecyl sulfate (SDS), under isothermal and nonisothermal conditions. Under both conditions, the initial increase in the CTAB concentration (up to 0.075 M) accelerated HSA gelation (marked by decreasing gel times (tgel) for the isothermal case or gel temperature (Tgel) for the nonisothermal case), whereas increasing the SDS concentration inhibited HSA gelation (i.e., increasing tgel or Tgel). The increase and decrease in HSA gelation by CTAB and SDS, respectively, reached a maximum at a surfactant/protein molar ratio of 100. Rheological properties, i.e., storage modulus (G′) and loss modulus (G″), exhibited mechanically stable behavior of HSA/CTAB gels over the covered concentration range, whereas HSA/SDS gels exhibited decreasing mechanical properties with increasing SDS concentration. Molecular dynamics simulation showed that the greater rate of the unfolding of the HSA structure in CTAB than in SDS was behind the rapid gelation kinetics of HSA in CTAB compared with SDS. Our result establishes that cationic CTAB and anionic SDS surfactants exert wide-ranging control over the rheological and kinetic properties of HSA hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fasano, S. Curry, E. Terreno, M. Galliano, G. Fanali, P. Narciso, S. Notari and P. Ascenzi, IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 57, 787 (2005).

    CAS  PubMed  Google Scholar 

  2. R. Panahi and M. Baghban-Salehi, Polym. Polym. Compos.: A Ref. Ser., 1561 (2019).

  3. P. Hájovská, M. Chytil and M. Kalina, Int. J. Biol. Macromol., 161, 738 (2020).

    PubMed  Google Scholar 

  4. A. Oliva, A. Santoveña, M. Llabres and J. B. Fariña, J. Pharm. Pharmacol., 51, 385 (1999).

    CAS  PubMed  Google Scholar 

  5. J. Park, M.-S. Kim, T. Park, Y. H. Kim and D. H. Shin, Int. J. Biol. Macromol., 166, 221 (2021).

    CAS  PubMed  Google Scholar 

  6. A. Hashem, C. O. Aniagor, M. A. F. Afifi, A. Abou-Okeil and S. H. Samaha, Korean J. Chem. Eng., 38, 2157 (2021).

    CAS  Google Scholar 

  7. S. K. Seidlits, Z. Z. Khaing, R. R. Petersen, J. D. Nickels, J. E. Vanscoy, J. B. Shear and C. E. Schmidt, Biomaterials, 31, 3930 (2010).

    CAS  PubMed  Google Scholar 

  8. S. Lim, D. Jeong, M.-R. Ki, S. P. Pack and Y. S. Choi, Korean J. Chem. Eng., 38, 98 (2021).

    CAS  Google Scholar 

  9. C. Yan and D. J. Pochan, Chem. Soc. Rev., 39, 3528 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. O. S. Nnyigide and K. Hyun, Rheol. Acta, 57, 563 (2018).

    CAS  Google Scholar 

  11. A. Aufderhorst-Roberts, M. D. Hughes, A. Hare, D. A. Head, N. Kapur, D. J. Brockwell and L. Dougan, Biomacromolecules, 21, 4253 (2020).

    CAS  PubMed  Google Scholar 

  12. K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt and G. H. McKinley, Prog. Polym. Sci., 36, 1697 (2011).

    CAS  Google Scholar 

  13. L. Böcker, P. A. Rühs, L. Böni, P. Fischer and S. Kuster, ACS Biomater. Sci. Eng., 2, 90 (2015).

    PubMed  Google Scholar 

  14. L. Liu, J. You, H. Zhu and W. Tan, Korean J. Chem. Eng., 39, 1927 (2022).

    CAS  Google Scholar 

  15. O. S. Nnyigide and K. Hyun, Korean J. Chem. Eng., 35, 1969 (2018).

    CAS  Google Scholar 

  16. O. S. Nnyigide, T. O. Nnyigide and K. Hyun, Carbohydr. Polym., 251, 117061 (2021).

    CAS  PubMed  Google Scholar 

  17. Q. Yuan, X. Lu, K. H. Khayat, D. Feys and C. Shi, Mater. Struct., 50, 112 (2016).

    Google Scholar 

  18. M. Kim and K. Hyun, Korea-Aust. Rheol. J., 33, 25 (2021).

    Google Scholar 

  19. S. H. Lee, S. Y. Kim, R. Salehiyan and K. Hyun, Korea-Aust. Rheol. J., 33, 321 (2021).

    Google Scholar 

  20. J. W. Rhim, R. V. Nunes, V. A. Jones and K. R. Swartzel, J. Food Sci., 54, 446 (1989).

    CAS  Google Scholar 

  21. J.-T. Fu and M. A. Rao, Food Hydrocolloids, 15, 93 (2001).

    CAS  Google Scholar 

  22. S. A. Madbouly and J. U. Otaigbe, Macromolecules, 39, 4144 (2006).

    CAS  Google Scholar 

  23. J. Jezek, M. Rides, B. Derham, J. Moore, E. Cerasoli, R. Simler and B. Perez-Ramirez, Adv. Drug Deliv. Rev., 63, 1107 (2011).

    CAS  PubMed  Google Scholar 

  24. W. J. Galush, L. N. Le and J. M. R. Moore, J. Pharm. Sci., 101, 1012 (2012).

    CAS  PubMed  Google Scholar 

  25. J. H. Gu, R. Qian, R. Chou, P. V. Bondarenko and M. Goldenberg, Pharm. Res., 35, (2018).

  26. J. A. Lemkul, W. J. Allen and D. R. Bevan, J. Chem. Inf. Model., 50, 2221 (2010).

    CAS  PubMed  Google Scholar 

  27. O. S. Nnyigide and K. Hyun, J. Biomolec. Struct. Dynamics, 39, 1106 (2020).

    Google Scholar 

  28. O. S. Nnyigide and K. Hyun, Food Hydrocolloids, 103, 105656 (2020).

    CAS  Google Scholar 

  29. S. Sugio, A. Kashima, S. Mochizuki, M. Noda and K. Kobayashi, Protein Eng., Des. Selection, 12, 439 (1999).

    CAS  Google Scholar 

  30. S. Sugio, A. Kashima, S. Mochizuki, M. Noda and K. Kobayashi, RCSB PDB:1AO6 (1998).

  31. C. Oostenbrink, A. Villa, A. E. Mark and W. F. Van Gunsteren, J. Comput. Chem., 25, 1656 (2004).

    CAS  PubMed  Google Scholar 

  32. G. Petekidis, J. Rheol., 58, 1085 (2014).

    CAS  Google Scholar 

  33. M. C. Childers and V. Daggett, J. Phys. Chem. B, 122, 6673 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. K. A. Dill and J. L. MacCallum, Science, 338, 1042 (2012).

    CAS  PubMed  Google Scholar 

  35. E. Jacob and R. Unger, Bioinformatics, 23, e225 (2007).

    CAS  PubMed  Google Scholar 

  36. A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W. Nelson, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver, K. Kavukcuoglu and D. Hassabis, Nature, 577, 706 (2020).

    CAS  PubMed  Google Scholar 

  37. S. H. Arabi, B. Aghelnejad, C. Schwieger, A. Meister, A. Kerth and D. Hinderberger, Biomater. Sci., 6, 478 (2018).

    CAS  PubMed  Google Scholar 

  38. C. Le Bon, T. Nicolai and D. Durand, Macromolecules, 32, 6120 (1999).

    CAS  Google Scholar 

  39. T. Nicolai, Adv. Colloid Interface Sci., 270, 147 (2019).

    CAS  PubMed  Google Scholar 

  40. T. K. Vo, S.-S. Kim and J. Kim, Korean J. Chem. Eng., 39, 1478 (2022).

    CAS  Google Scholar 

  41. P. R. Avallone, E. Raccone, S. Costanzo, M. Delmonte, A. Sarrica, R. Pasquino and N. Grizzuti, Food Hydrocolloids, 111, 106248 (2021).

    CAS  Google Scholar 

  42. P. H. Santos, O. H. Campanella and M. A. Carignano, J. Phys. Chem. B, 114, 13052 (2010).

    CAS  PubMed  Google Scholar 

  43. O. S. Nnyigide, Y. Oh, H. Y. Song, E.-k. Park, S.-H. Choi and K. Hyun, Korea-Aust. Rheol. J., 29, 101 (2017).

    Google Scholar 

  44. V. Normand, S. Muller, J.-C. Ravey and A. Parker, Macromolecules, 33, 1063 (2000).

    CAS  Google Scholar 

  45. Y. Moriyama and K. Takeda, J. Oleo Sci., 66, 521 (2017).

    CAS  PubMed  Google Scholar 

  46. N. Fogh-Andersen, P. J. Bjerrum, and O. Siggaard-Andersen, Clin. Chem., 39, 48 (1993).

    CAS  PubMed  Google Scholar 

  47. M. Javed, S. Iqbal, I. Fatima, S. Nadeem, A. Mohyuddin, M. Arif, A. Amjad, S. Shahid, F. H. Alshammari, M. I. Alahmdi, E. B. Elkaeed, R. M. Alzhrani, N. S. Awwad, H. A. Ibrahium and M. A. Qayyum, Colloid Interface Sci. Commun., 48, 100623 (2022).

    CAS  Google Scholar 

  48. P. Sandkühler, J. Sefcik and M. Morbidelli, Langmuir, 21, 2062 (2005).

    PubMed  Google Scholar 

  49. W. Wang, Int. J. Pharm., 289, 1 (2005).

    CAS  PubMed  Google Scholar 

  50. T. Zlateva, R. Boteva, B. Salvato and R. Tsanev, Int. J. Biol. Macromol., 26, 357 (1999).

    CAS  PubMed  Google Scholar 

  51. J. A. L. da Silva, M. P. Gonçalves and M. A. Rao, Int. J. Biol. Macromol., 17, 25 (1995).

    CAS  PubMed  Google Scholar 

  52. A. Stenstam, A. Khan and H. Wennerström, Langmuir, 17, 7513 (2001).

    CAS  Google Scholar 

  53. M. Heinig and D. Frishman, Nucleic Acids Res., 32, 500 (2004).

    Google Scholar 

  54. Z. Cao and J. Wang, J. Biomolec. Struct. Dynamics, 27, 651 (2010).

    CAS  Google Scholar 

  55. K. K. Patapati and N. M. Glykos, PLoS ONE, 5, e15290 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. J. F. Zayas, Functionality of proteins in food, Springer Berlin (2013).

    Google Scholar 

  57. O. S. Nnyigide, S.-G. Lee and K. Hyun, Sci. Rep., 9, 10643 (2019).

    PubMed  PubMed Central  Google Scholar 

  58. O. S. Nnyigide, S.-G. Lee and K. Hyun, J. Mol. Model., 24, 1 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2021R1I1A3054572).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Hyun.

Additional information

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2023_1513_MOESM1_ESM.pdf

Rheological and molecular dynamics simulation studies of the gelation of human serum albumin in anionic and cationic surfactants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nnyigide, T.O., Nnyigide, O.S. & Hyun, K. Rheological and molecular dynamics simulation studies of the gelation of human serum albumin in anionic and cationic surfactants. Korean J. Chem. Eng. 40, 1871–1881 (2023). https://doi.org/10.1007/s11814-023-1513-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1513-0

Keywords

Navigation