Skip to main content
Log in

General spin systems without genuinely multipartite nonlocality

  • Regular Article – Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

There are multipartite entangled states in many-body systems which may be potential resources in various quantum applications. In this paper, based on clustering theorems, we show that both the gapped ground state and thermal state at an upper-bounded inverse temperature have no genuine multipartite nonlocality when disjoint regions are far away from each other. The present n-particle system shows only biseparable quantum correlations when the propagation relations show exponential decay. Similar result holds for spin systems with product states as initial states. These results show interesting features of quantum many-body systems with exponential decay of correlations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript has proved theoretical results for genuinely multipartite nonlocality.]

References

  1. E. Schrödinger, Discussion of probability relations between separated system. Proc. Camb. Philos. Soc. 4, 555–563 (1935)

    Article  ADS  MATH  Google Scholar 

  2. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. H. Buhrman, R. Cleve, S. Massar, R. de Wolf, Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665 (2010)

    Article  ADS  Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  5. D.P. DiVincenzo, Quantum computation. Science 270, 255 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 699 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. C.-Y. Chen, G.-J. Zeng, F.-J. Lin, Y.-H. Chou, H.-C. Chao, Quantum cryptography and its applications over the Internet. IEEE Netw. 29, 64–69 (2015)

    Article  Google Scholar 

  8. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. M. Li, S.-M. Fei, X.Q. Li-Jost, Quantum entanglement: separability, measure, fidelity of teleportation, and distillation. Adv. Math. Phys. 2010, 301072 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A. Galindo, M.A. Martin-Delgado, Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74, 347 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. M. Malik, O.S. Magana-Loaiza, R.W. Boyd, Quantum secured imaging. Appl. Phys. Lett 101, 24 (2012)

    Article  Google Scholar 

  13. M. Żukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, “Event-ready-detectors’’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  14. H.-F. Wang, J.-J. Wen, A.-D. Zhu, S. Zhang, K.-H. Yeon, Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity. Phys. Lett. A 377, 40 (2013)

    Article  MATH  Google Scholar 

  15. S.A. Babichev, B. Brezger, A.I. Lvovsky, Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. Phys. Rev. Lett. 92, 047903 (2004)

    Article  ADS  Google Scholar 

  16. K. Edamatsu, Entangled photons: Generation, observation, and characterization. Jpn. J. Appl. Phys. 46, 7175 (2007)

    Article  ADS  Google Scholar 

  17. K. Edamatsu, G. Oohata, R. Shimizu, T. Itoh, Entangled photons: generation of ultraviolet entangled photons in a semiconductor. Nature 409, 63 (2001)

    Google Scholar 

  18. X.-X. Xia, Q.-C. Sun, Q. Zhang, J.-W. Pan, Long distance quantum teleportation. Quantum Sci. Technol. 3, 014012 (2018)

    Article  ADS  Google Scholar 

  19. D.D. Sukachev, Large quantum networks. Phys. Usp. 64, 1021–1037 (2022)

    Article  Google Scholar 

  20. A.S. Sorensen, L.-M. Duan, J.I. Cirac, P. Zoller, Many-particle entanglement with Bose–Einstein condensates. Nature 409, 6816 (2001)

    Article  Google Scholar 

  21. R. Prevedel, M.S. Tame, A. Stefanov, M. Paternostro, M.S. Kim, A. Zeilinger, Experimental demonstration of decoherence-free one-way information transfer. Phys. Rev. Lett. 99, 250503 (2007)

    Article  ADS  Google Scholar 

  22. D. Lago-Rivera, S. Grandi, J.V. Rakonjac, A. Seri, H. de Riedmatten, Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 7861 (2021)

    Article  Google Scholar 

  23. P. Feldmann, M. Gessner, M. Gabbrielli, C. Klempt, L. Santos, L. Pezzè, A. Smerzi, Interferometric sensitivity and entanglement by scanning through quantum phase transitions in spinor Bose–Einstein condensates. Phys. Rev. A 97, 032339 (2018)

    Article  ADS  Google Scholar 

  24. P. Xu, S. Yi, W.-X. Zhang, Efficient generation of many-body entangled states by multilevel oscillations. Phys. Rev. Lett. 123, 073001 (2019)

    Article  ADS  Google Scholar 

  25. X.-Y. Luo, Y.-Q. Zou, L.-N. Wu, Q. Liu, M.-F. Han, M.K. Tey, L. You, Deterministic entanglement generation from driving through quantum phase transitions. Science 355, 6325 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.S. Bell, Physics(NY) 1, 195 (1964)

    Google Scholar 

  27. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  MATH  Google Scholar 

  28. R.F. Werner, Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  29. D.M. Greenberger, M.A. Horne, A. Zeilinger, in Bell’s Theorem, Quantum Theory and Conceptions of the Universe. ed. by M. Kafatos (Kluwer, Dordrecht, 1989), pp. 69–72

  30. M. Żukowski, C.̆ Brukner, Bell’s theorem for general \(n\)-qubit states. Phys. Rev. Lett. 88, 210401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. G. Svetlichny, Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 10, 3066 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  32. D. Collins, N. Gisin, S. Popescu, D. Roberts, V. Scarani, Bell-Type inequalities to detect true \(n\)-Body nonseparability. Phys. Rev. Lett. 89, 1704051 (2002)

    Google Scholar 

  33. J.-D. Bancal, N. Brunner, N. Gisin, Y.-C. Liang, Detecting genuine multipartite quantum nonlocality: a simple approach and generalization to arbitrary dimensions. Phys. Rev. Lett. 106, 020405 (2011)

    Article  ADS  Google Scholar 

  34. L. Hardy, Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. J. Kimble, The quantum Internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  36. S. Wehner, D. Elkouss, R. Hanson, Quantum internet: a vision for the road ahead. Science 362, 9288 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. M. Navascues, E. Wolfe, D. Rosset, A. Pozas-Kerstjens, Genuine network multipartite entanglement. Phys. Rev. Lett. 125, 240505 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. T. Kraft, S. Designolle, C. Ritz, N. Brunner, O. Gühne, M. Huber, Quantum entanglement in the triangle network. arXiv:2002.03970 (2020)

  39. M.-X. Luo, New genuine multipartite entanglement. Adv. Quantum Tech. 4, 2000123 (2021)

    Article  Google Scholar 

  40. X. Coiteux-Roy, E. Wolfe, M.-O. Renou, No bipartite-nonlocal causal theory can explain nature’s correlations. Phys. Rev. Lett. 127, 200401 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  41. H. Cao, M.-O. Renou, C. Zhang, G. Massé, X. Coiteux-Roy, B.-H. Liu, Y.-F. Huang, C.-F. Li, G.-C. Guo, E. Wolfe, Experimental Demonstration that No Tripartite-Nonlocal Causal Theory Explains Nature’s Correlations. arXiv: 2201.12754 (2022)

  42. Y.-L. Mao, Z.-D. Li, S.-X. Yu, J.-Y. Fan, Test of Genuine Multipartite Nonlocality. arXiv: 2201.12753 (2022)

  43. J. Batle, M. Casas, Nonlocality and entanglement in the XY model. Phys. Rev. A 82, 062101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Campbell, M. Paternostro, Multipartite nonlocality in a thermalized Ising spin chain. Phys. Rev. A 82, 042324 (2010)

    Article  ADS  Google Scholar 

  45. S. Wagner, R. Schmied, M. Fadel, P. Treutlein, N. Sangouard, J.D. Bancal, Bell correlations in a many-body system with finite statistics. Phys. Rev. Lett. 119, 170403 (2017)

    Article  ADS  Google Scholar 

  46. S. Pelisson, L. Pezzè, A. Smerzi, Nonlocality with ultracold atoms in a lattice. Phys. Rev. A 93, 022115 (2016)

    Article  ADS  Google Scholar 

  47. J. Tura, G. De las Cuevas, R. Augusiak, M. Lewenstein, A. Acín, J. I. Cirac, Energy as a detector of nonlocality of many-body spin systems. Phys. Rev. X 7, 021005 (2017)

  48. M. Hofmann, A. Osterloh, O. Gühne, Scaling of genuine multiparticle entanglement close to a quantum phase transition. Phys. Rev. B 89, 134101 (2014)

    Article  ADS  Google Scholar 

  49. A. Biswas, R. Prabhu, A. Sen(De), U. Sen, Genuine-multipartite-entanglement trends in gapless-to-gapped transitions of quantum spin systems. Phys. Rev. A 90, 032301 (2014)

  50. L. Jindal, A. D. Rane, H. S. Dhar, A. Sen(De), U. Sen, Patterns of genuine multipartite entanglement in frustrated quantum spin systems. Phys. Rev. A 89, 012316 (2014)

  51. S. S. Roy, H. S. Dhar, D. Rakshit, A. Sen(De), U. Sen, Detecting phase boundaries of quantum spin-1/2 XXZ ladder via bipartite and multipartite entanglement transitions. J. Magn. Magn. Mater. 444, 227–235 (2017)

  52. S. Szalay, Multipartite entanglement measures. Phys. Rev. A 92, 042329 (2015)

    Article  ADS  Google Scholar 

  53. Z.-Y. Sun, M. Wang, Y.-Y. Wu, B. Guo, Multipartite nonlocality and boundary conditions in one-dimensional spin chains. Phys. Rev. A 99, 042323 (2019)

    Article  ADS  Google Scholar 

  54. H. S. Dhar, A. Sen(De), U. Sen, Characterizing genuine multisite entanglement in isotropic spin lattices. Phys. Rev. Lett. 111, 070501 (2013)

  55. Y. Dai, C.-J. Zhang, W.-L. You, Y.-L. Dong, C.H. Oh, Genuine multipartite nonlocality in the one-dimensional ferromagnetic spin-1/2 chain. Phys. Rev. A 96, 012336 (2017)

    Article  ADS  Google Scholar 

  56. S. Saha, D. Das, S. Sasmal, D. Sarkar, K. Mukherjee, A. Roy, S.S. Bhattacharya, Sharing of tripartite nonlocality by multiple observers measuring sequentially at one side. Quantum Inf. Process. 18, 42 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. S.M. Giampaolo, B.C. Hiesmayr, Genuine multipartite entanglement in the clustersing model. New J. Phys. 9, 093033 (2014)

  58. O. Gühne, G. Tóth, H.J. Briegel, Multipartite entanglement in spin chains. New J. Phys. 7, 229 (2005)

    Article  Google Scholar 

  59. J. Stasińska, B. Rogers, M. Paternostro, G.D. Chiara, A. Sanpera, Long-range multipartite entanglement close to a first-order quantum phase transition. Phys. Rev. A 89, 032330 (2014)

    Article  ADS  Google Scholar 

  60. C.H.S. Vieira, C. Duarte, R.C. Drumond, M.T. Cunha, Bell non-locality in many body quantum systems with exponential decay of correlations. Braz. J. Phys. 51, 1603–1616 (2021)

  61. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  62. M.L. Almeida, D. Cavalcanti, V. Scarani, A. Acín, Multipartite fully-nonlocal quantum states. Phys. Rev. A 81, 052111 (2010)

  63. J.D. Bancal, N. Gisin, Y.-C. Liang, S. Pironio, Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 25, 250404 (2011)

    Article  Google Scholar 

  64. J.-D. Bancal, N. Gisin, S. Pironio, Looking for symmetric Bell inequalities. J. Phys. A Math. Theor. 43, 385303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. P. John, D.J.J. Farnell, An Introduction to quantum spin Systems (Springer, Heidelberg, 1990)

    MATH  Google Scholar 

  66. M.B. Hastings, T. Koma, Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 3 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  67. B. Nachtergaele, R. Sims, Lieb–Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119–130 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. M. Kliesch, C. Gogolin, M.J. Kastoryano, A. Riera, J. Eisert, Locality of temperature. Phys. Rev. X 4, 031019 (2014)

    Google Scholar 

  69. K. Fredenhagen, A remark on the cluster theorem. Commun. Math. Phys. 97, 461–463 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. E.H. Lieb, D.W. Robinson, The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  71. B. Nachtergaele, Y. Ogata, R. Sims, Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124, 1–13 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. M. Seevinck, G. Svetlichny, Bell-type inequalities for partial separability in \(n\)-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. N. Li, S.-L. Luo, Y.-Y. Mao, Quantumness-generating capability of quantum dynamics. Quantum Inf. Process. 17, 74 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the national natural Science Foundation of China (No. 62172341), and Fundamental Research Funds for the Central Universities (No. 2682014CX095).

Author information

Authors and Affiliations

Authors

Contributions

Y-HY and XY conceived theoretical results. Y-HY and M-XL took the lead in writing the manuscript.

Corresponding author

Correspondence to Ming-Xing Luo.

Appendices

Appendix A: Proof of Fact 1

Since \(\rho \) is a state of exponentially clustering of correlations, from Lemma 1 we have

$$\begin{aligned} |\langle E_{i}E_{j}E_{k}\rangle -\langle E_{i}\rangle \langle E_{j} E_{k}\rangle |\le & {} ce^{-\kappa \tau '}|X'| \nonumber \\\le & {} ce^{-\kappa \tau }|X| \end{aligned}$$
(A1)

where \(i,j,k\in \{1,\ldots ,n\}\), \(|X'|=\max \{|E_{i}|,|E_{j}|,|E_{k}|\}\) and \(\tau '=\min \{\tau _{ij},\tau _{ik},\tau _{jk}\}\). With this result, we show Fact 1 by induction.

The case for \(k=3\) is followed from Eq. (A1). For \(k=m<n\), assume that we have

$$\begin{aligned}&|\langle E_{i_{1}}\cdots E_{i_{m}}\rangle -\langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-2}}\rangle \langle E_{i_{m-1}}E_{i_{m}}\rangle | \nonumber \\&\qquad \le (m-2)ce^{-\kappa \tau } |X| \end{aligned}$$
(A2)

Now, consider the case of \(k=m+1\). In fact, we get that

$$\begin{aligned} \langle E_{i_{1}}\cdots E_{i_{m+1}}\rangle\le & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-2}}\rangle \langle E_{i_{m-1}}E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&+(m-2)ce^{-\kappa \tau } |X| \nonumber \\\le & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-2}}\rangle (\langle E_{i_{m-1}}\rangle \langle E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&+ce^{-\kappa \tau }) |X| +(m-2)ce^{-\kappa \tau } |X| \nonumber \\\le & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-1}}\rangle \langle E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&+(m-1)ce^{-\kappa \tau } |X| \end{aligned}$$
(A3)

and

$$\begin{aligned} \langle E_{i_{1}}\cdots E_{i_{m+1}}\rangle\ge & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-2}}\rangle \langle E_{i_{m-1}}E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&-(m-2)ce^{-\kappa \tau } |X| \nonumber \\\ge & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-2}}\rangle (\langle E_{i_{m-1}}\rangle \langle E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&-ce^{-\kappa \tau }) |X| -(m-2)ce^{-\kappa \tau } |X| \nonumber \\\ge & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-1}}\rangle \langle E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&-(m-1)ce^{-\kappa \tau } |X| \end{aligned}$$
(A4)

Combining the inequalities (A3) and (A4), we get that

$$\begin{aligned} (1-m)|X|ce^{-\kappa \tau }\le & {} \langle E_{i_{1}}\cdot \cdot \cdot E_{i_{m+1}}\rangle \nonumber \\&-\langle E_{i_{1}}\rangle \cdot \cdot \cdot \langle E_{i_{m-1}}\rangle \langle E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\\le & {} (m-1)ce^{-\kappa \tau } |X| \end{aligned}$$
(A5)

Therefore, it implies that for \(k=s\) (\(s\ge 3\)) we have

$$\begin{aligned}&|\langle E_{i_{1}}\cdot \cdot \cdot E_{i_{s}}\rangle -\langle E_{i_{1}}\rangle \cdot \cdot \cdot \langle E_{i_{s-2}}\rangle \langle E_{i_{s-1}}E_{i_{s}}\rangle | \nonumber \\&\qquad \le (s-2)ce^{-\kappa \tau } |X| \end{aligned}$$
(A6)

Appendix B: The proof of Fact 5

Similar to Fact 1, from Lemma 3 we have

$$\begin{aligned}&|\langle E_{i}E_{j}E_{k}\rangle -\langle E_{i}\rangle \langle E_{j} E_{k}\rangle | \nonumber \\&\qquad \le ce^{-\kappa \tau }(e^{\kappa v t}-1) |X_{i}|\,|X_{j}|\,|X_{k}| \end{aligned}$$
(B1)

where \(i,j,k\in \{1,\ldots ,n\}\). With this result, we show this fact by induction.

The case of \(k=3\) is followed from Eq. (B1). Assume that for \(k=m<n\) we have

$$\begin{aligned}&|\langle E_{i_{1}}\cdots E_{i_{m}}\rangle -\langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-2}}\rangle \langle E_{i_{m-1}}E_{i_{m}}\rangle | \nonumber \\&\qquad \le ce^{-\kappa \tau }(e^{\kappa v t}-1)\Sigma ^{m-2}_{i=1}\prod _{j=i}^m|X_{j}| \end{aligned}$$
(B2)

Define \(\hat{\alpha }=\Sigma ^{m-2}_{i=1}\prod _{j=i}^{m+1}|X_{j}|\). For \(k=m+1\), we get that

$$\begin{aligned} \langle E_{i_{1}}\cdots E_{i_{m+1}}\rangle\le & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-2}}\rangle \langle E_{i_{m-1}}E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&+\hat{\alpha }ce^{-\kappa \tau }(e^{\kappa v t}-1) \nonumber \\\le & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-2}}\rangle (\langle E_{i_{m-1}}\rangle \langle E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&+ce^{-\kappa \tau }(e^{\kappa v t}-1) |X_{i_{m-1}}|\,|X_{i_{m}}|\,|X_{i_{m+1}}|) \nonumber \\&+\hat{\alpha }ce^{-\kappa \tau }(e^{\kappa v t}-1) \nonumber \\\le & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-1}}\rangle \langle E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&+ce^{-\kappa \tau }(e^{\kappa v t}-1)\Sigma ^{m-1}_{i=1}\prod _{j=i}^{m+1}|X_{j}| \end{aligned}$$
(B3)

and

$$\begin{aligned} \nonumber \langle E_{i_{1}}\cdots {}E_{i_{m+1}}\rangle\ge & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-2}}\rangle \langle E_{i_{m-1}}E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&-\hat{\alpha }ce^{-\kappa \tau }(e^{\kappa v t}-1) \nonumber \\\ge & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-2}}\rangle (\langle E_{i_{m-1}}\rangle \langle E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&-ce^{-\kappa \tau }(e^{\kappa v t}-1) |X_{i_{m-1}}|\,|X_{i_{m}}|\,|X_{i_{m+1}}|) \nonumber \\&-\hat{\alpha }ce^{-\kappa \tau }(e^{\kappa v t}-1) \nonumber \\\ge & {} \langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-1}}\rangle \langle E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&-ce^{-\kappa \tau }(e^{\kappa v t}-1)\Sigma ^{m-1}_{i=1}\prod _{j=i}^{m+1}|X_{j}| \end{aligned}$$
(B4)

From the inequalities (B3) and (B4), we get that

$$\begin{aligned}&-ce^{-\kappa \tau }(e^{\kappa v t}-1)\Sigma ^{m-1}_{i=1}\prod _{j=i}^{m+1}|X_{j}| \nonumber \\&\qquad \le \langle E_{i_{1}}\cdots {} E_{i_{m+1}}\rangle -\langle E_{i_{1}}\rangle \cdots \langle E_{i_{m-1}}\rangle \langle E_{i_{m}}E_{i_{m+1}}\rangle \nonumber \\&\qquad \le ce^{-\kappa \tau }(e^{\kappa v t}-1)\Sigma ^{m-1}_{i=1}\prod _{j=i}^{m+1}|X_{j}| \end{aligned}$$
(B5)

So, from the inequality (B5), for any \(k=s\ge 3\) it follows that

$$\begin{aligned} \nonumber&|\langle E_{i_{1}}\cdots {} E_{i_{s}}\rangle -\langle E_{i_{1}}\rangle \cdots \langle E_{i_{s-2}}\rangle \langle E_{i_{s-1}}E_{i_{s}}\rangle | \nonumber \\&\qquad \le ce^{-\kappa \tau }(e^{\kappa v t}-1)\Sigma ^{s-2}_{i=1}(|X_{i}|\,|X_{i+1}|\cdot \cdot \cdot |X_{s}|)\nonumber \\&\qquad \le \alpha ce^{-\kappa \tau }(e^{\kappa v t}-1) \end{aligned}$$
(B6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YH., Yang, X. & Luo, MX. General spin systems without genuinely multipartite nonlocality. Eur. Phys. J. D 76, 61 (2022). https://doi.org/10.1140/epjd/s10053-022-00388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-022-00388-5

Navigation