Skip to main content
Log in

Superhalogens in fluoride diruthenium Ru2Fn (n = 1–10): density functional theory

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The structures of the lowest and a few higher isomers for Ru2Fn (n = 1–10) clusters are obtained based on functional B3P86 with 6–311 + g(d) for fluorine and LANL2DZ for ruthenium. The results show that Ru2Fn (n = 5–10) clusters investigated represent superhalongens characterized by the vertical electron affinity energies (VEA) significantly exceeding 3.8 eV. The VEA values estimated for the Ru2F5, Ru2F6, Ru2F7, Ru2F8, Ru2F9, and Ru2F10 systems are predicted to be 3.8 eV, 4.5 eV, 5.7 eV, 6.0 eV, 6.1 eV, and 6.8 eV. The stabilities of the lowest isomers for Ru2Fn (n = 5–10) and the chemical bonds between the two metal atoms are analyzed. The energy gap, vibration frequency, vertical electron affinity energy, vertical ionization energy and frontier molecular orbitals of these Ru2Fn clusters are also calculated. The spin polarization of Ru2Fn clusters originate mainly from Ru 4d orbitals, which determines the magnetism of the systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Gutsev, Chem. Phys. 56 277 (1981)

    Google Scholar 

  2. S. Freza, P. Skurski, Chem. Phys. Lett. 487, 19 (2010)

    ADS  Google Scholar 

  3. M. Czapla, et al., J. Phys. Chem. A 122, 8539 (2018)

    Google Scholar 

  4. S. Freza, et al., J. Fluorine Chem. 220, 41 (2019)

    Google Scholar 

  5. I. Anusiewicz, S. Freza, P. Skurski, Polyhedron 144, 125 (2018)

    Google Scholar 

  6. X. Wang, et al., J. Chem. Phys. 110, 4763 (1999)

    ADS  Google Scholar 

  7. B.M. Elliott, et al., J. Phys. Chem. A 109, 11560 (2005)

    Google Scholar 

  8. J. Yang, et al., J. Chem. Phys. 128, 201102 (2008)

    ADS  Google Scholar 

  9. G.L. Gutsev, et al., J. Phys. Chem. A 114, 9014 (2010)

    Google Scholar 

  10. C. Sikorska, et al., Inorg. Chem. 47, 7348 (2008)

    Google Scholar 

  11. S.K. De, Catal. Lett. 124, 174 (2008)

    Google Scholar 

  12. M.-O. Simon, J.-P. Genet, S. Darses, Org. Lett. 12, 3038 (2010)

    Google Scholar 

  13. Y. Han, et al., R. Soc. Chem. 17, 20 (2015)

    Google Scholar 

  14. W.J. Casteel, et al., Inorg. Chem. 31, 3124 (1992)

    Google Scholar 

  15. A. Jarid, et al., Chem. Phys. 150, 353 (1991)

    Google Scholar 

  16. M.A. Hepworth, R.D. Peacock, P.L. Robinson, J. Chem. Soc. 1954, 1197 (1954)

    Google Scholar 

  17. D.L. Hildenbrand, K.H. Lau, J. Chem. Phys. 89 (1988) 5825.

    ADS  Google Scholar 

  18. E.M. Page, et al., Inorg. Chem. 32, 4311 (1993)

    Google Scholar 

  19. A. Jarid, et al., Chem. Phys. 150, 353 (1991)

    Google Scholar 

  20. S.A. Siddiqui, T. Rasheed, N. Bouarissa, Bull. Mater. Sci. 36, 743 (2013)

    Google Scholar 

  21. R. Craciun, et al., J. Phys. Chem. A 114, 7571 (2010)

    Google Scholar 

  22. M.A. Hepworth, et al., Acta Cryst. 10, 63 (1957)

    Google Scholar 

  23. N. Bartlett, et al., Inorg. Chem. 12, 1717 (1973)

    Google Scholar 

  24. J.H. Holloway, R.D. Peacock, J. Chem. Soc. 1963, 527 (1963)

    Google Scholar 

  25. A.J. Naseralla, et al., J. Chem. Soc. Dalton Transactions 30, 1676 (2001)

    Google Scholar 

  26. P. Hohenberg, W. Kohn, Phys Rev. 136, B864 (1964)

    ADS  Google Scholar 

  27. T. Rasheed, S.A. Siddiqui, N. Bouarissa, J. Fluorine Chem. 146, 59 (2013)

    Google Scholar 

  28. S.A. Siddiqui, N. Bouarissa, Solid State Sci. 15, 60 (2013)

    ADS  Google Scholar 

  29. S.A. Siddiqui, et al., J. Fluorine Chem. 135, 285 (2012)

    Google Scholar 

  30. A.K. Srivastava, N. Misra, J. Fluorine Chem. 158, 65 (2014)

    Google Scholar 

  31. A.D. McLean, G.S. Chandler, J. Chem. Phys. 72, 5639 (1980)

    ADS  Google Scholar 

  32. A.D. Becke, J. Chem. Phys. 98, 52 (1993)

    Google Scholar 

  33. Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Theory Comput. 2, 82 (2006)

    Google Scholar 

  34. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 89 (1988)

    Google Scholar 

  35. B. Miehlich, A. Savin, H. Preuss, Chem. Phys. Lett. 157, 6 (1989)

    Google Scholar 

  36. T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 393, 7 (2004)

    Google Scholar 

  37. C. Adamo, V. Barone, J. Chem. Phys. 108, 75 (1998)

    Google Scholar 

  38. T.H. Dunning Jr, P.J. Hay, Phys. Rev. B 33, 24 (1976)

    Google Scholar 

  39. J.P. Perdew, et al., Phys. Rev. B 46, 87 (1991)

    Google Scholar 

  40. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 79 (1981)

    Google Scholar 

  41. J.M. Tao, et al., Phys. Rev. Lett. 91, 146401 (2003)

    ADS  Google Scholar 

  42. J.D. Chai, M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)

    ADS  Google Scholar 

  43. J.D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 20 (2008)

    Google Scholar 

  44. P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985)

    ADS  Google Scholar 

  45. M.J. Frisch, Gaussian 09, Revision A.02. (Gaussian Inc., Wallingford CT, 2009).

  46. Y. Wang, et al., Comput. Phys. Commun. 183, 2063 (2012)

    ADS  Google Scholar 

  47. T.C. Steimle, W.L. Virgo, T. Ma, J. Chem. Phys. 124, 024309 (2006)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Chen.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjd/e2020-100578-7.

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary material

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yan, J., Chen, W. et al. Superhalogens in fluoride diruthenium Ru2Fn (n = 1–10): density functional theory. Eur. Phys. J. D 74, 106 (2020). https://doi.org/10.1140/epjd/e2020-100578-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100578-7

Keywords

Navigation