Skip to main content
Log in

Study of ab initio calculations of structural, electronic and optical properties of ternary semiconductor \({\mathbf{G}\mathbf{a}}_{1-\mathbf{x}}{\mathbf{I}\mathbf{n}}_{\mathbf{x}}\mathbf{S}\mathbf{b}\) alloys

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

First principles calculations of the structural, electronic and optical properties of GaSb, InSb and their ternary \({{\text{Ga}}}_{1-x}{{\text{In}}}_{x}{\text{Sb}}\) alloys (x = 0.25, 0.50 and 0.75) have been performed using the full-potential linear muffin-tin orbital (FP-LAPW) method within density functional theory (DFT). The generalized gradient approximation and modified Becke and Janson functional with local density approximation (mBJ–LDA) are utilized for the treatment of exchange and correlation potentials. The results show the calculated lattice constants increase linearity with increasing the In concentration. The electronic band structure indicates that these alloys are direct band gap semiconductors for all the values of x and the band gap decreases as x increases from x = 0 to x = 1. The results also show that the there is a non-linear dependence of the band gap on composition x in \({{\text{Ga}}}_{1-x}{{\text{In}}}_{x}{\text{Sb}}\) alloys. Regarding optical properties, the real and imaginary parts of the dielectric function have been calculated. The results show that the static dielectric constant increases with increase in concentration of In, consistent with reduction in energy band gap. The onset point and major peaks in the imaginary parts of the dielectric function spectra are identified for the \({{\text{Ga}}}_{1-x}{{\text{In}}}_{x}{\text{Sb}}\) alloys and shown that they are related to the corresponding band gap values. The results also show that for energy values higher than \(\cong 4\) eV, the electromagnetic wave transition through \({{\text{Ga}}}_{1-x}{{\text{In}}}_{x}{\text{Sb}}\) alloys is nearly zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Streicher M, Corregidor V, Catarino N, Alves L C, Franco N, Fonseca M et al 2016 Nucl. Instrum. Methods Phys. Res. B 371 278

    Article  CAS  Google Scholar 

  2. Sun J, Han M, Gu Y, Yang Z X and Zeng H 2018 Adv. Opt. Mater. 6 1800256

    Article  Google Scholar 

  3. Kimura D, Balasekaran S, Inada H, Iguchi Y and Kimata M 2018 SEI Tech. Rev. 86 41

    Google Scholar 

  4. Paajaste J, Suomalainen S, Koskinen R, Härkönen A, Guina M and Pessa M 2009 J. Cryst. Growth 311 1917

    Article  CAS  Google Scholar 

  5. Yang B, Tao G and Li X 2019 United States Patent Application US 16 234

    Google Scholar 

  6. Liu Q, Wang J, He G, Yang D, Zhang W and Liu J 2020 Vacuum 174 109177

    Article  CAS  Google Scholar 

  7. Inatomi Y, Sakata K, Arivanandhan M, Rajesh G, Nirmal Kumar V, Koyama T et al 2015 npj Microgravity 1 1

    Article  Google Scholar 

  8. Li D, Lan C, Manikandan A, Yip S, Zhou Z, Liang X et al 2019 Nat. Commun. 10 1664

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gadkari D B 2020 Int. J. Eng. Res. Appl. 10 7

    Google Scholar 

  10. Hohenberg P and Kohn W J 1964 Phys. Rev. 136 B864

    Article  Google Scholar 

  11. Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

    Article  Google Scholar 

  12. Singh D and Nordstorm L 1994 ebook of planwaves, pseudopotential, and the LAPW method (Berlin: Springer)

    Book  Google Scholar 

  13. Mun Wong K, Alay-e-Abbas S M, Fang Y, Shaukat A and Lei Y 2013 J. Appl. Phys. 114 034901

    Article  Google Scholar 

  14. Blaha P, Schwarz K, Madsen G K, Kvasnicka D and Luitz J 2001 Wien2k 60 1

    Google Scholar 

  15. Schwarz K and Blaha P 2003 Solid state calculations using Wien2k Comput. Mater. Sci. 28 259

    Article  CAS  Google Scholar 

  16. Wu Z and Cohen R E 2006 Phys. Rev. B 73 235116

    Article  Google Scholar 

  17. Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401

    Article  PubMed  Google Scholar 

  18. Adachi S 1985 J. Appl. Phys. 58 R1

    Article  CAS  Google Scholar 

  19. Madelung O 2004 Semiconductors: data handbook (Springer)

  20. Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30 244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gagui S, Ghemid S, Meradji H, Zaidi B, Amimour B, Tahir S A et al 2020 Optik 219 165253

    Article  CAS  Google Scholar 

  22. Namjoo S, Rozatian A S, Jabbari I and Puschnig P 2015 Phys. Rev. B 91 205205

    Article  Google Scholar 

  23. Smith D Y, Shiles E, Inokuti M and Palik E 1985 Handbook of optical constants of solids 1 369

  24. Smith N V 1971 Phys. Rev. B 3 1862

    Article  Google Scholar 

  25. Abt R, Ambrosch-Draxl C and Knoll P 1994 Phys. B: Condens. Matter 194 1451

    Article  Google Scholar 

  26. Ambrosch-Draxl C and Sofo J O 2006 Comput. Phys. Commun. 175 1

    Article  CAS  Google Scholar 

  27. Wooten F 1973 Am. J. Phys. 41 939

    Article  Google Scholar 

  28. Wooten Frederick 1972 Optical properties of solids (Academic Press)

  29. Dixon J R Jr and Furdyna J K 1980 Solid State Commun. 35 195

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge access to HPC resources at University of Hormozgan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Noorafshan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorafshan, M., Heydari, S. Study of ab initio calculations of structural, electronic and optical properties of ternary semiconductor \({\mathbf{G}\mathbf{a}}_{1-\mathbf{x}}{\mathbf{I}\mathbf{n}}_{\mathbf{x}}\mathbf{S}\mathbf{b}\) alloys. Bull Mater Sci 47, 88 (2024). https://doi.org/10.1007/s12034-024-03177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03177-5

Keywords

Navigation