Skip to main content

Advertisement

Log in

Accurate ab initio-based DMBE potential energy surface for HLi2(X  2A′) via scaling of the external correlation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A globally accurate potential energy surface is reported for the electronic ground-state HLi2 by fitting ab initio energies to double many-body expansion formalism. The total 3726 ab initio energies used to map the HLi2 potential energy surface are calculated using the multi-reference configuration interaction method, with their dynamical correlation being semiempirically corrected by the double many-body expansion-scaled external correlation method. The current potential energy surface generates an excellent fit of the ab initio energies, showing a small root-mean squared derivation of 0.636   kcal   mol-1. The topographical features of the HLi2 potential energy surface are examined in detail, which concludes that the H + Li2(X1 Σ g ) → Li + LiH(X1 Σ) reaction is essentially barrierless and the exothermicity is calculated to be 33.668   kcal   mol-1, thus corroborates the available experimental and theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Wu, H.R. Ihle, J. Chem. Phys. 66, 4356 (1977)

    Article  ADS  Google Scholar 

  2. B. Vezin, P. Dugourd, D. Rayane, P. Labastie, M. Broyer, Chem. Phys. Lett. 202, 209 (1993)

    Article  ADS  Google Scholar 

  3. R. Antoine, P. Dugourd, D. Rayane, A.-R. Allouche, M. Aubert-Frécon, M. Broyer, Chem. Phys. Lett. 261, 670 (1996)

    Article  ADS  Google Scholar 

  4. A.L. Companion, J. Chem. Phys. 48, 1186 (1968)

    Article  ADS  Google Scholar 

  5. P. Siegbahn, H.F. Schaefer III, J. Chem. Phys. 62, 3488 (1975).

    Article  ADS  Google Scholar 

  6. S.K. Kim, D.R. Herschbach, Faraday Discuss. Chem. Soc. 84, 159 (1987).

    Article  Google Scholar 

  7. W.H. Fang, X.Z. You, Z. Yin, Chem. Phys. Lett. 233, 237 (1995)

    Article  ADS  Google Scholar 

  8. D. Skouteris, J. Castillo, D. Manolopoulos, Comput. Phys. Commun. 133, 128 (2000)

    Article  ADS  MATH  Google Scholar 

  9. A.M. Maniero, P.H. Acioli, G.M. e Silva, R. Gargano, Chem. Phys. Lett. 490, 123 (2010)

    Article  ADS  Google Scholar 

  10. W. Skomorowski, F. Pawlowski, T. Korona, R. Moszynski, P.S. Zuchowski, J.M. Hutson, J. Chem. Phys. 134, 114109 (2011)

    Article  ADS  Google Scholar 

  11. H.V.R. Vila, L.A. Leal, J.B.L. Martins, D. Skouteris, G.M. e Silva, R. Gargano, J. Chem. Phys. 136, 134319 (2012)

    Article  ADS  Google Scholar 

  12. A.J.C. Varandas, Advanced Series in Physical Chemistry (World Scientific Publishing, 2004), Chapt. 5, p. 91

  13. A.J.C. Varandas, Adv. Chem. Phys. 74, 255 (1988).

    Google Scholar 

  14. A.J.C. Varandas, in Lecture Notes in Chemistry, edited by A. Laganá, A. Riganelli (Springer, Berlin, 2000), Vol. 75, pp. 33–56.

  15. H.-J. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)

    Article  ADS  Google Scholar 

  16. P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 115, 259 (1985)

    Article  ADS  Google Scholar 

  17. R.A. Kendall, T.H. Dunning Jr., R.J. Harrison, J. Chem. Phys. 96, 6769 (1992)

    Article  Google Scholar 

  18. T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  19. A.J.C. Varandas, J. Chem. Phys. 90, 4379 (1989)

    Article  ADS  Google Scholar 

  20. H.-J. Werner, P.J. Knowles, R. Lindh, F.R. Manby, M. Schütz, P. Celani, T. Korona, G. Rauhut, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A.W. Lloyd, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, MOLPRO, version 2006.1, a package of ab initio programs http://www.molpro.net

  21. A.J.C. Varandas, J.D. Silva, J. Chem. Soc. Faraday Trans. 88, 941 (1992).

    Article  Google Scholar 

  22. A.J.C. Varandas, Mol. Phys. 60, 527 (1987).

    Article  ADS  Google Scholar 

  23. A.J.C. Varandas, J. Mol. Struct. Theochem. 120, 401 (1985)

    Article  Google Scholar 

  24. R.J. Le Roy, Spec. Period. Rep. Chem. Soc. Mol. Spectrosc. 1, 113 (1973).

    Google Scholar 

  25. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand, New York, 1979).

  26. F.B. Orth, W.C. Stwalley, J. Mol. Spectrosc. 76, 17 (1979).

    Article  ADS  Google Scholar 

  27. B. Jönsson, B.O. Roos, P.R. Taylor, P.E.M. Siegbahn, J. Chem. Phys. 74, 4566 (1981)

    Article  ADS  Google Scholar 

  28. P. Jasik, J. Sienkiewicz, Chem. Phys. 323, 563 (2006)

    Article  ADS  Google Scholar 

  29. A.J.C. Varandas, J. Chem. Phys. 105, 3524 (1996)

    Article  ADS  Google Scholar 

  30. A.J.C. Varandas, Chem. Phys. Lett. 194, 333 (1992)

    Article  ADS  Google Scholar 

  31. A.J.C. Varandas, L.A. Poveda, Theor. Chem. Acc. 116, 404 (2006)

    Article  Google Scholar 

  32. Y.Q. Li, J.C. Yuan, M.D. Chen, F.C. Ma, M.T. Sun, J. Comput. Chem. 34, 1686 (2013)

    Article  Google Scholar 

  33. Y.Z. Song, A.J.C. Varandas, J. Chem. Phys. 130, 134317 (2009)

    Article  ADS  Google Scholar 

  34. Y.Z. Song, P.J.S.B. Caridade, A.J.C. Varandas, J. Phys. Chem. A 113, 9213 (2009)

    Article  Google Scholar 

  35. Y.Z. Song, A.J.C. Varandas, J. Phys. Chem. A 115, 5274 (2011)

    Article  Google Scholar 

  36. E. Martínez-Núñez, A.J.C. Varandas, J. Phys. Chem. A 105, 5923 (2001)

    Article  Google Scholar 

  37. A.J.C. Varandas, Chem. Phys. Lett. 138, 455 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Zhi Song or Qing-Tian Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, YZ., Li, YQ., Gao, SB. et al. Accurate ab initio-based DMBE potential energy surface for HLi2(X  2A′) via scaling of the external correlation. Eur. Phys. J. D 68, 3 (2014). https://doi.org/10.1140/epjd/e2013-40440-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40440-7

Keywords

Navigation