Skip to main content

Force Fields for Classical Molecular Dynamics

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

In this chapter we review the basic features and the principles underlying molecular mechanics force fields commonly used in molecular modeling of biological macromolecules. We start by summarizing the historical background and then describe classical pairwise additive potential energy functions. We introduce the problem of the calculation of nonbonded interactions, of particular importance for charged macromolecules. Different parameterization philosophies are then presented, followed by a section on force field validation. We conclude with a brief overview on future perspectives for the development of classical force fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlick T (2010) Molecular modeling and simulation: an interdisciplinary guide, vol 21, 2nd edn. Springer, New York

    Book  Google Scholar 

  2. Levitt M (2001) The birth of computational structural biology. Nat Struct Biol 8:392–393

    Article  PubMed  CAS  Google Scholar 

  3. Lifson S, Warshel A (1968) Consistent force field for calculations of conformations vibrational spectra and enthalpies of cycloalkane and n-alkane molecules. J Chem Phys 49:5116

    Article  CAS  Google Scholar 

  4. McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  PubMed  CAS  Google Scholar 

  5. Levitt M, Warshel A (1975) Computer simulation of protein folding. Nature 253:694–698

    Article  PubMed  CAS  Google Scholar 

  6. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    Article  PubMed  CAS  Google Scholar 

  7. Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  8. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Article  PubMed  CAS  Google Scholar 

  9. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) A new force field for molecular mechanical simulation of nucleic acids and proteins. J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  10. Besler BH, Merz KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  11. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  12. Wang JM, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  PubMed  Google Scholar 

  13. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimisation, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  14. Mackerell AD Jr (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25:1584–1604

    Article  PubMed  CAS  Google Scholar 

  15. Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  16. Jorgensen WL, Madura JD, Swenson CJ (1984) Optimized intermolecular potential functions for liquid hydrocarbons. J Am Chem Soc 106:6638–6646

    Article  CAS  Google Scholar 

  17. Jorgensen WL (1981) Transferable intermolecular potential functions for water, alcohols and ethers. Application to liquid water. J Am Chem Soc 103:335–340

    Article  CAS  Google Scholar 

  18. Scott WRP, Hunenberger PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kruger P, van Gunsteren WF (1999) The GROMOS biomolecular simulation program package. J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  19. Oostenbrink C, Villa A, Mark AE, Van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656–1676

    Article  PubMed  CAS  Google Scholar 

  20. Levitt M, Hirshberg M, Sharon R, Daggett V (1995) Potential-energy function and parameters for simulations of the molecular-dynamics of proteins and nucleic-acids in solution. Comput Phys Commun 91:215–231

    Article  CAS  Google Scholar 

  21. Hess B (2002) Determining the shear viscosity of model liquids from molecular dynamics simulations. J Chem Phys 116:209–217

    Article  CAS  Google Scholar 

  22. Brooks CL, Pettitt BM, Karplus M (1985) Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids. J Chem Phys 83:5897–5908

    Article  CAS  Google Scholar 

  23. Apol E, Apostolov R, Berendsen HJC, Van Buuren A, Bjelkmar P, Van Drunen R, Feenstra A, Groenhof G, Kasson P, Larsson P, Meulenhoff P, Murtola T, Pall S, Pronk S, Schulz R, Shirts MR, Sijbers A, Tieleman DP, Hess B, van der Spoel D, Lindahl E (2010) GROMACS user manual version 4.5.4, http://www.gromacs.org

  24. Tironi IG, Sperb R, Smith PE, Vangunsteren WF (1995) A generalized reaction field method for molecular-dynamics simulations. J Chem Phys 102:5451–5459

    Article  CAS  Google Scholar 

  25. Schulz R, Lindner B, Petridis L, Smith JC (2009) Scaling of multimillion-atom biological molecular dynamics simulation on a petascale supercomputer. J Chem Theory Comput 5:2798–2808

    Article  CAS  Google Scholar 

  26. Monticelli L, Simoes C, Belvisi L, Colombo G (2006) Assessing the influence of electrostatic schemes on molecular dynamics simulations of secondary structure forming peptides. J Phys Condens Matter 18:S329–S345

    Article  CAS  Google Scholar 

  27. Walser R, Hunenberger PH, van Gunsteren WF (2001) Comparison of different schemes to treat long-range electrostatic interactions in molecular dynamics simulations of a protein crystal. Proteins 43:509–519

    Article  PubMed  CAS  Google Scholar 

  28. Anezo C, Vries AHD, Holtje H-D, Tieleman DP, Marrink S-J (2003) Methodogical issues in lipid bilayer simulations. J Phys Chem B 107:9424–9433

    Article  CAS  Google Scholar 

  29. Krautler V, Hunenberger PH (2008) Explicit-solvent molecular dynamics simulations of a DNA tetradecanucleotide duplex: lattice-sum versus reaction-field electrostatics. Mol Simulat 34:491–499

    Article  CAS  Google Scholar 

  30. Cheatham TE, Miller JL, Fox T, Darden TA, Kollman PA (1995) Molecular-dynamics simulations on solvated biomolecular systems—the particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. J Am Chem Soc 117:4193–4194

    Article  CAS  Google Scholar 

  31. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  32. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald potential. J Chem Phys 103:8577–8592

    Article  CAS  Google Scholar 

  33. Warshel A, Sharma PK, Kato M, Parson WW (2006) Modeling electrostatic effects in proteins. Biochim Biophys Acta 1764:1647–1676

    Article  PubMed  CAS  Google Scholar 

  34. Kastenholz MA, Hunenberger PH (2006) Computation of methodology-independent ionic solvation free energies from molecular simulations. I. The electrostatic potential in molecular liquids. J Chem Phys 124(22):224501

    Article  PubMed  Google Scholar 

  35. Kastenholz MA, Hunenberger PH (2004) Influence of artificial periodicity and ionic strength in molecular dynamics simulations of charged biomolecules employing lattice-sum methods. J Phys Chem B 108:774–788

    Article  CAS  Google Scholar 

  36. Allen TW, Andersen OS, Roux B (2004) Energetics of ion conduction through the gramicidin channel. Proc Natl Acad Sci USA 101:117–122

    Article  PubMed  CAS  Google Scholar 

  37. Esselink K (1995) A comparison of algorithms for long-range interactions. Comput Phys Commun 87:375–395

    Article  CAS  Google Scholar 

  38. Shirts MR, Mobley DL, Chodera JD, Pande VS (2007) Accurate and efficient corrections for missing dispersion interactions in molecular Simulations. J Phys Chem B 111:13052–13063

    Article  PubMed  CAS  Google Scholar 

  39. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  40. Venable RM, Chen LE, Pastor RW (2009) Comparison of the extended isotropic periodic sum and particle mesh ewald methods for simulations of lipid bilayers and monolayers. J Phys Chem B 113:5855–5862

    Article  PubMed  CAS  Google Scholar 

  41. Veld PJ, Ismail AE, Grest GS (2007) Application of Ewald summations to long-range dispersion forces. J Chem Phys 127(14):144711

    Article  Google Scholar 

  42. Tieleman DP, MacCallum JL, Ash WL, Kandt C, Xu ZT, Monticelli L (2006) Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid-protein interactions, side chain transfer free energies and model proteins. J Phys Condens Matter 18:S1221–S1234

    Article  PubMed  CAS  Google Scholar 

  43. van Gunsteren WF, Mark AE (1998) Validation of molecular dynamics simulation. J Chem Phys 108:6109–6116

    Article  Google Scholar 

  44. van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glattli A, Hunenberger PH, Kastenholz MA, Ostenbrink C, Schenk M, Trzesniak D, van der Vegt NFA, Yu HB (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45:4064–4092

    Article  Google Scholar 

Download references

Acknowledgments

D.P.T. is an Alberta Innovates Health Solutions Scientist and the Alberta Innovates Technology Futures Strategic Chair in (Bio)Molecular Simulation. Work in his group supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Peter Tieleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Monticelli, L., Tieleman, D.P. (2013). Force Fields for Classical Molecular Dynamics. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics