Skip to main content
Log in

Ab initio potential energy surfaces calculation via restricted Hartree–Fock for molecular dynamics simulation: a comprehensive review

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This study systematically analyzes the restricted Hartree–Fock (RHF) method, which is used to calculate the potential energy surface (PES) of closed-shell molecular systems. In this process, an optimized algorithm for the calculation of the RHF matrix based on the Roothaan equation is designed and a detailed programming strategy for its implementation is presented. The algorithm is highly stable in the Psi4 library and Python environment and demonstrates the ability to efficiently calculate PES for basic organic compounds such as ethane (C2H6), propane (C3H8), and butane (C4H10). Furthermore, the PES derived by the proposed algorithm plays a crucial role in determining the force field parameters for CHARMM, AMBER, COMPASS, and DREIDING, which are essential for molecular dynamics simulations. The findings of this study provide fundamental insights into the study of first-principle-based molecular dynamics simulations, which are expected to expand the scope of applications in basic research for an ab initio computational chemistry and physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Source code for this work is publicly available at https://github.com/dustpu/closedShellRHF.git

References

  1. K. Makuuchi, C. Song, Radiation Processing of Polymer Materials and Its Industrial Applications (Wiley, Hoboken, NJ, 2012)

    Book  Google Scholar 

  2. A.T. Naikwadi, B.K. Sharma, K.D. Bhatt, P.A. Mahanwar, Gamma Radiation Processed Polymeric Materials for High Performance Applications: A Review. Front. Chem. 10, 837111 (2022)

    Article  Google Scholar 

  3. A. Ashfaq, M.-C. Clochard, X. Coqueret, C. Dispenza, M.S. Driscoll, P. Ulański, M. Al-Sheikhly, Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polym. 12(12), 2877 (2020)

    Article  Google Scholar 

  4. T. Zaharescu, G.H.C. Varca, Radiation Modified Polymers for Medical Applications. Radiat. Phys. Chem.. Phys. Chem. 194, 110043 (2022)

    Article  Google Scholar 

  5. S. Zinkle, Radiation-Induced Effects on Microstructure, in Comprehensive Nuclear Materials. (Elsevier, UK, 2012), pp.65–98

    Chapter  Google Scholar 

  6. I. Srivastava, A. Kotia, S.K. Ghosh, M.K.A. Ali, Recent Advances of Molecular Dynamics Simulations in Nanotribology. J. Mol. Liq. 335, 116154 (2021)

    Article  Google Scholar 

  7. D. Hou, J. Yu, P. Wang, Molecular Dynamics Modeling of the Structure, Dynamics, Energetics, and Mechanical Properties of Cement-Polymer Nanocomposite. Compos. Part B Eng. 162, 433–444 (2019)

    Article  Google Scholar 

  8. S. Sharma (ed.), Molecular Dynamics Simulation of Nanocomposites Using BIOVIA Materials Studio, Lammps and Gromacs (Elsevier, UK, 2019)

    Google Scholar 

  9. V.D. Vachev, J.H. Frederick, B.A. Grishanin, V.N. Zadkov, N.I. Koroteev, Stilbene Isomerization Dynamics on Multidimensional Potential Energy Surface. Molecular Dynamics Simulation. Chem. Phys. Lett. 215(4), 306–314 (1993)

    Article  ADS  Google Scholar 

  10. P. Valentini, T.E. Schwartzentruber, J.D. Bender, I. Nompelis, G.V. Candler, Direct Molecular Simulation of Nitrogen Dissociation Based on an Ab Initio Potential Energy Surface. Phys. Fluids 27(8), 086102 (2015)

    Article  ADS  Google Scholar 

  11. K. Kitaura, K. Morokuma, A New Energy Decomposition Scheme for Molecular Interactions Within the Hartree-Fock Approximation. Int. J. Quantum Chem. 10, 325–340 (1976)

    Article  Google Scholar 

  12. P. Lykos, G.W. Pratt, Discussion on The Hartree-Fock Approximation. Rev. Mod. Phys. 35, 496 (1963)

    Article  ADS  Google Scholar 

  13. P. Pöpperl, E.V.H. Doggen, J.F. Karcher, A.D. Mirlin, K.S. Tikhonov, Dynamics of Many-Body Delocalization in the Time-Dependent Hartree-Fock Approximation. Ann. Phys. 435(1), 168486 (2021)

    Article  MathSciNet  Google Scholar 

  14. M.M. Mestechkin, Restricted Hartree-Fock Method Instability. Int. J. Quantum Chem. 13(3), 469–481 (1978)

    Article  MathSciNet  Google Scholar 

  15. S. Hammes-Schiffer, H.C. Andersen, The Advantages of the General Hartree-Fock Method for Future Computer Simulation of Materials. J. Chem. Phys. 99, 1901–1913 (1993)

    Article  ADS  Google Scholar 

  16. J.M. Turney, A.C. Simmonett, R.M. Parrish, E.G. Hohenstein, F.A. Evangelista, J.T. Fermann, B.J. Mintz, L.A. Burns, J.J. Wilke, M.L. Abrams et al., Psi4: An Open-Source Ab Initio Electronic Structure Program. WIREs Comput. Mol. Sci. 2, 556–565 (2012)

    Article  Google Scholar 

  17. G.R. Ahmadi, J. Almlöf, The Coulomb operator in a Gaussian product basis. Chem. Phys. Lett. 246(4–5), 364–370 (1995)

    Article  ADS  Google Scholar 

  18. R.A. Guyer, Exchange operator. Phys. Rev. A 10(5), 1785 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.P. Polychronakos, Exchange operator formalism for integrable systems of particles. Phys. Rev. Lett. 69(5), 703 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  20. T.P. Hamilton, P. Pulay, Direct inversion in the iterative subspace (DIIS) optimization of open-shell, excited-state, and small multiconfiguration SCF wave functions. J. Chem. Phys. 84, 5728–5734 (1986)

    Article  ADS  Google Scholar 

  21. W. Kolos, C.C.J. Roothaan, Accurate electronic wave functions for the H2 molecule. Rev. Mod. Phys. 32, 219 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  22. T. Amos, L.C. Snyder, Unrestricted Hartree-Fock Calculations. I. An Improved Method of Computing Spin Properties. J. Chem. Phys. 41, 1773–1783 (1964)

    Article  ADS  Google Scholar 

  23. W.J. Lauderdale, J.F. Stanton, J. Gauss, J.D. Watts, R.J. Bartlett, Many-Body Perturbation Theory with a Restricted Open-Shell Hartree-Fock Reference. Chem. Phys. Lett. 187, 21–28 (1991)

    Article  ADS  Google Scholar 

  24. C.F. Fischer, A General Multi-Configuration Hartree-Fock Program. Comput. Phys. Commun.. Phys. Commun. 64, 431–454 (1991)

    Article  ADS  Google Scholar 

  25. E.R. Johnson, A.D. Becke, A Post-Hartree–Fock Model of Intermolecular Interactions. J. Chem. Phys. 123(2), 024101 (2005)

    Article  ADS  Google Scholar 

  26. C.W. Siders, A. Cavalleri, K. Sokolowski-Tinten, C.S. Tóth, C.P.J. Barty et al., Detection of Nonthermal Melting by Ultrafast X-Ray Diffraction. Science 286(5443), 1340–1342 (1999)

    Article  Google Scholar 

  27. H. Eyring, Steric Hindrance and Collision Diameters. J. Am. Chem. Soc. 54, 3191–3203 (1932)

    Article  Google Scholar 

  28. V.V. Kuznetsov, Conformational Behavior of Ethane Molecule Encapsulated in a Nanotube. Russ. J. Org. Chem. 49, 1231–1235 (2013)

    Article  Google Scholar 

  29. T. Iijima, Molecular Structure of Propane. Bull. Chem. Soc. JpnJpn. 45, 1291–1294 (1972)

    Article  Google Scholar 

  30. Y. Mo, A Critical Analysis on the Rotation Barriers in Butane. J. Org. Chem. 75(8), 2733–2736 (2010)

    Article  Google Scholar 

  31. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier et al., LAMMPS - A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun.. Phys. Commun. 271, 108171 (2022)

    Article  Google Scholar 

  32. LAMMPS Documentation, “Bond Harmonic,” Available at https://docs.lammps.org/bond_harmonic.html (accessed Nov. 20, 2023).

  33. LAMMPS Documentation, “Angle Harmonic,” Available at https://docs.lammps.org/angle_harmonic.html (accessed Nov. 20, 2023).

  34. LAMMPS Documentation, “Dihedral Multi Harmonic,” Available at https://docs.lammps.org/dihedral_multi_harmonic.html (accessed Nov. 20, 2023).

  35. LAMMPS Documentation, “Pair Lennard-Jones,” Available at https://docs.lammps.org/pair_lj.html (accessed Nov. 20, 2023).

  36. NIST Chemistry WebBook, Available at https://webbook.nist.gov/chemistry/ (accessed Nov. 20, 2023).

  37. J. F. Briesmeister, Ed., MCNPTM-A General Monte Carlo N-Particle Transport Code, Version 4C, LA-13709-M, Los Alamos National Laboratory, April 2000.

  38. S.A. Pozzi, E. Padovani, M. Marseguerra, MCNP-PoliMi: A Monte-Carlo Code for Correlation Measurements. Nucl Instrum. Methods Phys. Res. Sect A 513, 550–558 (2003)

    Article  ADS  Google Scholar 

  39. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce et al., GEANT4-a Simulation Toolkit. Nucl Instrum Methods Phys Res Sect A 506(3), 250–303 (2003)

    Article  ADS  Google Scholar 

  40. J. Allison, K. Amako, J. Apostolakis et al., Geant4 Developments and Applications. IEEE Trans. Nucl. Sci.Nucl. Sci. 53, 270–278 (2006)

    Article  ADS  Google Scholar 

  41. M. Meunier, Introduction to Materials Studio. EPJ Web Conf. 30, 04001 (2012)

    Article  Google Scholar 

  42. F. Neese, Software Update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022)

    Article  Google Scholar 

  43. H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, Molpro: A General-Purpose Quantum Chemistry Program Package. WIREs Comput. Mol. Sci. 2, 242–253 (2012)

    Article  Google Scholar 

  44. A.I. Krylov, P.M.W. Gill, Q-Chem: An Engine for Innovation. WIREs Comput. Mol. Sci. 3, 317–326 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation of Korea (NRF) grant (RS-2022-00156264) and KAERI institutional R&D Program (Project No. 523410-23) funded by Ministry of Science and ICT (MIST), Republic of Korea

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Jeong Gwon.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. derivation Eq. (2.1c)

$$ \begin{gathered} E_{elec} = \left\langle {{\Psi }_{0} \left| {{\hat{\text{H}}}} \right.\left| {{\Psi }_{0} } \right.} \right\rangle = \left\langle {{\Psi }_{0} \left| {{\text{h}}\left( 1 \right) + {\text{h}}\left( 2 \right) + \frac{1}{{{\text{r}}_{12} }}\left| {{\Psi }_{0} } \right.} \right.} \right\rangle \hfill \\ = \underbrace {{\left\langle {{\Psi }_{0} \left| {{\text{h}}\left( 1 \right)} \right.\left| {{\Psi }_{0} } \right.} \right\rangle }}_{{\text{a}}} + \underbrace {{\left\langle {{\Psi }_{0} \left| {{\text{h}}\left( 2 \right)\left| {{\Psi }_{0} } \right.} \right.} \right\rangle }}_{{\text{b}}} + \underbrace {{\left\langle {{\Psi }_{0} \left| {\frac{1}{{{\text{r}}_{12} }}\left| {{\Psi }_{0} } \right.} \right.} \right\rangle }}_{{\text{c}}} \hfill \\ \end{gathered} $$
(A.1)

By substituting Eq. (2.1b) with the term a in Eq. (A.1) and expanding it, the following equation can be obtained

$$\langle {\Psi }_{0}|h(1)|{\Psi }_{0}\rangle =\int {dx}_{1}{dx}_{2}\frac{1}{\sqrt{2}}{\left\{{X}_{a}\left(1\right){X}_{b}\left(2\right)-{X}_{b}\left(1\right){X}_{a}\left(2\right)\right\}}^{*}h\left(1\right)\frac{1}{\sqrt{2}}\left\{{X}_{a}\left(1\right){X}_{b}\left(2\right)-{X}_{b}\left(1\right){X}_{a}\left(2\right)\right\} =\frac{1}{2}\int {dx}_{1}{dx}_{2}\left\{{X}_{a}^{*}\left(1\right){X}_{b}^{*}\left(2\right)h\left(1\right){X}_{a}\left(1\right){X}_{b}\left(2\right)-{X}_{a}^{*}\left(1\right){X}_{b}^{*}\left(2\right)h\left(1\right){X}_{b}\left(1\right){X}_{a}\left(2\right) -{X}_{b}^{*}\left(1\right){X}_{a}^{*}\left(2\right)h\left(1\right){X}_{a}\left(1\right){X}_{b}\left(2\right)+{X}_{b}^{*}\left(1\right){X}_{a}^{*}\left(2\right)h\left(1\right){X}_{b}\left(1\right){X}_{a}\left(2\right)\right\} $$
(A.2)

When the orthonormalization conditions, \(\int {dx}_{2}{X}_{b}\left(2\right){X}_{b}\left(2\right)=1\) and \(\int {dx}_{2}{X}_{b}\left(2\right){X}_{a}\left(2\right)=0\) of the wavefunction are applied to eliminate \({dx}_{2}\) on the right-hand side, the energy expectation value for \(h(1)\), i.e., the term a in Eq. (A.1), can be calculated as

$$\langle {\Psi }_{0}|h(1)|{\Psi }_{0}\rangle =\frac{1}{2}\int {dx}_{1}{X}_{a}^{*}\left(1\right)h(1){X}_{a}(1)+\frac{1}{2}\int {dx}_{1}{X}_{b}^{*}h\left(1\right){X}_{b}\left(1\right)$$
(A.3)

The term b in Eq. (A.1) can be calculated in the same way as the term a, and the result is the same as shown in Eq. (A.3). Thus, \(h\left(1\right)+h(2)\), which corresponds to the 1e operator in Eq. (A.1), can finally be generalized as

$$\langle {\Psi }_{0}|h\left(1\right)+h(2)|{\Psi }_{0}\rangle =\int dx{ X}_{a}^{*} h {X}_{a}+\int dx {X}_{b}^{*} h {X}_{b}\to \sum_{a}^{N}\langle {X}_{a}|h|{X}_{a}\rangle $$
(A.4)

Next, by substituting Eq. (2.1b) with the term c in Eq. (A.1), the following equation can be obtained.

$$\langle {\Psi }_{0}|\frac{1}{{r}_{12}}|{\Psi }_{0}\rangle =\int {dx}_{1}{dx}_{2}\frac{1}{\sqrt{2}}{\left\{{X}_{a}\left(1\right){X}_{b}\left(2\right)-{X}_{b}\left(1\right){X}_{a}\left(2\right)\right\}}^{*}\frac{1}{{r}_{12}}\frac{1}{\sqrt{2}}\left\{{X}_{a}\left(1\right){X}_{b}\left(2\right)-{X}_{b}\left(1\right){X}_{a}\left(2\right)\right\}==\frac{1}{2}\int {dx}_{1}{dx}_{2}\left\{{X}_{a}^{*}\left(1\right){X}_{b}^{*}\left(2\right){\frac{1}{{r}_{12}}X}_{a}\left(1\right){X}_{b}\left(2\right)-{X}_{a}^{*}\left(1\right){X}_{b}^{*}\left(2\right)\frac{1}{{r}_{12}}{X}_{b}\left(1\right){X}_{a}\left(2\right) -{X}_{b}^{*}\left(1\right){X}_{a}^{*}\left(2\right)\frac{1}{{r}_{12}}{X}_{a}\left(1\right){X}_{b}\left(2\right)+{X}_{b}^{*}\left(1\right){X}_{a}^{*}\left(2\right)\frac{1}{{r}_{12}}{X}_{b}\left(1\right){X}_{a}\left(2\right)\right\}$$
(A.5)

Since (1) and (2) can be changed with dummy indices, Eq. (A.6) can be obtained by exchanging the electron indices in the third and fourth terms of Eq. (A.5).

$$\langle {\Psi }_{0}|\frac{1}{{r}_{12}}|{\Psi }_{0}\rangle =\int {dx}_{1}{dx}_{2}{X}_{a}^{*}\left(1\right){X}_{b}^{*}\left(2\right){\frac{1}{{r}_{12}}X}_{a}\left(1\right){X}_{b}\left(2\right)-\int {dx}_{1}{dx}_{2}{X}_{a}^{*}\left(1\right){X}_{b}^{*}\left(2\right){\frac{1}{{r}_{12}}X}_{b}\left(1\right){X}_{a}\left(2\right)$$
(A.6)
$$ \to \left\langle {X_{a} X_{b} {|}X_{a} X_{b} } \right\rangle - \left\langle {X_{a} X_{b} {|}X_{b} X_{a} } \right\rangle $$
(A.7)
$$ \to \frac{1}{2}\mathop \sum \limits_{a}^{N} \mathop \sum \limits_{b}^{N} \left\langle {X_{a} X_{b} {|}X_{a} X_{b} } \right\rangle - \left\langle {X_{a} X_{b} {|}X_{b} X_{a} { }} \right\rangle { } $$
(A.8)

By Dirac notation, Eq. (A.7) can be written as a representation of Eq. (A.6), while Eq. (A.8) is a generalization of Eq. (A.7) for N electrons. On multiplying Eq. (A.8) by ½, the effect of double counting can be eliminated since a- > b and b- > a are the same interactions. From the above expansion, Eelec based on spin-orbitals can be finally expressed by adding Eqs. (A.4) and (A.8) as

$${E}_{elec}=\sum_{a}^{N}\langle {X}_{a}|h|{X}_{a}\rangle +\frac{1}{2}\sum_{a}^{N}\sum_{b}^{N}\langle {X}_{a}{X}_{b}|{X}_{a}{X}_{b}\rangle -\langle {X}_{a}{X}_{b}|{X}_{b}{X}_{a}\rangle $$
(A.9)

Appendix B. derivation Eq. (3.1e)

$$\widehat{f}\left({r}_{1}\right)=\int {dw}_{1}{\alpha }^{*}\left({w}_{1}\right)\left\{h\left({r}_{1}\right)+\sum_{b}^{N}\int {dx}_{2}{X}_{b}^{*}\left(2\right)\frac{1}{{r}_{12}}\left(1-{P}_{12}\right){X}_{b}\left(2\right)\right\}\alpha \left({w}_{1}\right)$$
$$=\int {dw}_{1}{\alpha }^{*}\left({w}_{1}\right)h\left({r}_{1}\right)\alpha \left({w}_{1}\right)+\sum_{b}^{N}\int {dw}_{1}{dx}_{2}{\alpha }^{*}\left({w}_{1}\right){X}_{b}^{*}\left({x}_{2}\right)\frac{1}{{r}_{12}}{X}_{b}\left({x}_{2}\right)\alpha \left({w}_{1}\right)$$
$$-\sum_{b}^{N}\int {dw}_{1}{dx}_{2}{\alpha }^{*}\left({w}_{1}\right){X}_{b}^{*}\left({x}_{2}\right)\frac{1}{{r}_{12}}{X}_{b}\left({x}_{1}\right)\alpha \left({w}_{2}\right)$$
(B.1)

By applying the orthonormalization condition, \(\int {dw}_{1}{\alpha }^{*}\left({w}_{1}\right)\alpha \left({w}_{1}\right)=1\), for the spin function in Eq. (B.1), and further substituting \(\sum_{b}^{N}{X}_{b}\) with Eq. (3.0a) to convert the spin-orbitals to space-orbitals, the following equation can be obtained.

$$\widehat{f}\left({r}_{1}\right)=h\left({r}_{1}\right)+\sum_{b}^{N/2}\int {dw}_{1}{dw}_{2}{dr}_{2}{\alpha }^{*}({w}_{1}){\alpha }^{*}({w}_{2}){\psi }^{*}({r}_{2})\frac{1}{{r}_{12}}\psi ({r}_{2})\alpha ({w}_{2})\alpha ({w}_{1})+\sum_{b}^{N/2}\int {dw}_{1}{dw}_{2}{dr}_{2}{\alpha }^{*}({w}_{1}){\beta }^{*}({w}_{2}){\psi }^{*}({r}_{2})\frac{1}{{r}_{12}}\psi ({r}_{2})\beta ({w}_{2})\alpha ({w}_{1})-\sum_{b}^{N/2}\int {dw}_{1}{dw}_{2}{dr}_{2}{\alpha }^{*}({w}_{1}){\alpha }^{*}({w}_{2}){\psi }^{*}({r}_{2})\frac{1}{{r}_{12}}\psi ({r}_{1})\alpha ({w}_{1})\alpha ({w}_{2})-\sum_{b}^{N/2}\int {dw}_{1}{dw}_{2}{dr}_{2}{\alpha }^{*}({w}_{1}){\beta }^{*}({w}_{2}){\psi }^{*}({r}_{2})\frac{1}{{r}_{12}}\psi ({r}_{1})\beta ({w}_{1})\alpha ({w}_{2})$$
(B.2)

When the orthonormalization condition is applied to the spin function again in Eq. (B.3), the first, second, and third sigma terms are eliminated by the condition that the spin function becomes 1, leaving only the space-function. Furthermore, the last term is eliminated by the conditions of \(\int {dw}_{1}{\alpha }^{*}\left({w}_{1}\right)\alpha \left({w}_{2}\right)=0\) and \(\int {dw}_{1}{\beta }^{*}\left({w}_{1}\right)\beta \left({w}_{2}\right)=0\). Thus, the closed-shell Fock operator \(\widehat{f}({r}_{1})\) can be expressed as

$$\widehat{f}\left({r}_{1}\right)=h\left({r}_{1}\right)+\sum_{b}^{N/2}2\int {dr}_{2}{\psi }_{b}^{*}\left({r}_{2}\right)\frac{1}{{r}_{12}}\psi \left({r}_{2}\right)-\sum_{b}^{N/2}\int {dr}_{2}{\psi }^{*}\left({r}_{2}\right)\frac{1}{{r}_{12}}\psi ({r}_{1})$$
(B.3)

If the permutation operator (\({P}_{12}\)) is applied to the third term in the above equation, \(\widehat{f}({r}_{1})\) can be simplified as

$$\widehat{f}\left({r}_{1}\right)=h\left({r}_{1}\right)+\sum_{b}^{N/2}\int {dr}_{2}{\psi }_{b}^{*}\left({r}_{2}\right)\frac{1}{{r}_{12}}(2-{P}_{12})\psi \left({r}_{2}\right) \to h\left({r}_{1}\right)+\sum_{b}^{N/2}2{J}_{b}\left({r}_{1}\right)-{K}_{b}({r}_{1})$$
(B.4)

Appendix C. derivation Eq. (3.3c)

By substituting Eq. (3.3b) into Eq. (3.2c), the following equation can be obtained.

$$FX{C}{\prime}=SXC{\prime}\varepsilon $$
(C.1)

If both sides are multiplied by the conjugate transpose of X, Eq. (C.1) can be expanded as

$$ X^{\dag } FXC^{\prime} = X^{\dag } SXC^{\prime}\varepsilon $$
(C.2)
$$ = \left( {Us^{ - 1/2} } \right)^{\dag } S\left( {Us^{ - 1/2} } \right)C^{\prime}\varepsilon $$
(C.3)
$$ = s^{ - 1/2} U^{\dag } SUs^{ - 1/2} C^{\prime}\varepsilon $$
(C.4)

In Eq. (C.4), \(U^{\dag } SU\) is the diagonal matrix s of S. Thus, \(s^{ - 1/2} U^{\dag } SUs^{ - 1/2}\) is equal to 1. If we define \(X^{\dag } FX\,as\,F^{\prime}\), the left-hand side of Eq. (C.2), then the Roothaan equation is finally expressed as

$$F{\prime}{C}{\prime}=C{\prime}\varepsilon $$
(C.5)

Appendix D. derivation Eq. (3.4c)

$${G}_{\mu \nu }=\sum_{b}^{N/2}\left\{2\int {dr}_{1}{dr}_{2}{\phi }_{\upmu }^{*}({r}_{1}){\psi }_{b}^{*}({r}_{2})\frac{1}{{r}_{12}}{{\phi }_{\nu }({r}_{1})\psi }_{b}({r}_{2})-\int {dr}_{1}{dr}_{2}{\phi }_{\upmu }^{*}({r}_{1}){\psi }_{b}^{*}({r}_{2})\frac{1}{{r}_{12}}{{\psi }_{b}({r}_{1})\phi }_{\nu }({r}_{2})\right\}$$
(D.1)

Here, the electrons in orbit b are still represented by space-wave function. Thus, if we apply a linear combination of the Gaussian basis functions of Eq. (3.2a) to convert them into a form that allows for matrix operations, \({\psi }_{b}^{*}\) and \({\psi }_{b}\) can be represented by \({\psi }_{b}^{*}\left({r}_{2}\right)=\sum_{\lambda }^{K}{C}_{\lambda b}^{*}{\phi }_{\lambda }\) and \({\psi }_{b}\left({r}_{2}\right)={\sum }_{\sigma }^{K}{C}_{\sigma b}{\phi }_{\sigma }\), respectively. By substituting them into Eq. (D.1) and expanding it, the following equation can be obtained.

$${G}_{\mu \upsilon }=\sum_{b}^{N/2}\sum_{\sigma \lambda }^{K}\left[2{C}_{\lambda b}^{*}{C}_{\sigma b}\int {dr}_{1}{dr}_{2}{\phi }_{\upmu }^{*}\left({r}_{1}\right){\phi }_{\lambda }^{*}\left({r}_{2}\right)\frac{1}{{r}_{12}}{\phi }_{\nu }\left({r}_{1}\right){\phi }_{\sigma }\left({r}_{2}\right)-{C}_{\lambda b}^{*}{C}_{\sigma b}\int {dr}_{1}{dr}_{2}{\phi }_{\upmu }^{*}\left({r}_{1}\right){\phi }_{\lambda }^{*}\left({r}_{2}\right)\frac{1}{{r}_{12}}{\phi }_{\sigma }\left({r}_{1}\right){\phi }_{\nu }\left({r}_{2}\right)\right] =\sum_{b}^{N/2}\sum_{\sigma \lambda }^{K}{C}_{\lambda b}^{*}{C}_{\sigma b}\left[2\langle {\phi }_{\upmu }{\phi }_{\lambda }|{\phi }_{\nu }{\phi }_{\sigma }\rangle -\langle {\phi }_{\upmu }{\phi }_{\lambda }|{\phi }_{\sigma }{\phi }_{\nu }\rangle \right] $$
(D.2)

By applying the electron density matrix from Eq. (3.4d) to Eq. (D.2) and summarizing it, term \({G}_{\mu \nu }\) can be simplified as

$${G}_{\mu \nu }=\sum_{\sigma \lambda }^{K}{P}_{\lambda \sigma }\left[\langle {\phi }_{\mu }{\phi }_{\lambda }|{\phi }_{\nu }{\phi }_{\sigma }\rangle -\frac{1}{2}\langle {\phi }_{\mu }{\phi }_{\lambda }|{\phi }_{\sigma }{\phi }_{\nu }\rangle \right]$$
(D.3)

Appendix E. derivation Eq. (3.5a)

$${E}_{elec}=\sum_{a}^{N}\langle {X}_{a}|h|{X}_{b}\rangle +\sum_{a}^{N}\sum_{b}^{N}\langle {X}_{a}{X}_{b}|{X}_{a}{X}_{b}\rangle -\langle {X}_{a}{X}_{b}|{X}_{b}{X}_{a}\rangle $$
(E.1)

By substituting Eq. (3.0a) for the 1e operator, the first term in Eq. (E.1) can be converted to a function of the spatial-orbital as

$$\sum_{a}^{N}\langle {X}_{a}|h|{X}_{b}\rangle =\sum_{a}^{N/2}\langle {\psi }_{a}\alpha |h|{\psi }_{a}\alpha \rangle +\sum_{a}^{N/2}\langle {\psi }_{a}\beta |h|{\psi }_{a}\beta \rangle $$
$$=\sum_{a}^{N/2}\int {dr}_{1}{dw}_{1}{\psi }_{a}^{*}\left({r}_{1}\right){\alpha }^{*}({w}_{1})h{\psi }_{a}({r}_{1})\alpha ({w}_{1})+\sum_{a}^{N/2}\int {dr}_{1}{dw}_{1}{\psi }_{a}^{*}\left({r}_{1}\right){\beta }^{*}\left({w}_{1}\right)h{\psi }_{a}\left({r}_{1}\right)\beta \left({w}_{1}\right)$$
(E.2)

By applying the orthonormalization condition \(\int {dw}_{1}{\alpha }^{*}\left({w}_{1}\right)\alpha \left({w}_{1}\right)=1\) and \(\int {dw}_{1}{\beta }^{*}\left({w}_{1}\right)\beta \left({w}_{1}\right)=1\) for the spin function in Eq. (E.2), the following equation can be obtained.

$$\sum_{a}^{N}\langle {X}_{a}|h|{X}_{b}\rangle =\sum_{a}^{N/2}\int {dr}_{1}{\psi }_{a}^{*}\left({r}_{1}\right)h{\psi }_{a}\left({r}_{1}\right)+\sum_{a}^{N/2}\int {dr}_{1}{dw}_{1}{\psi }_{a}^{*}\left({r}_{1}\right)h{\psi }_{a}\left({r}_{1}\right)$$
$$=\sum_{a}^{N/2}2\langle {\psi }_{a}|h|{\psi }_{a}\rangle $$
(E.3)

Next, by substituting Eq. (3.0b) for the 2e operator in Eq. (E.1), the second term can be converted into a function of the spatial-orbital as

$$\frac{1}{2}\sum_{a}^{N}\sum_{b}^{N}\langle {X}_{a}{X}_{b}|{X}_{a}{X}_{b}\rangle -\langle {X}_{a}{X}_{b}|{X}_{b}{X}_{a}\rangle $$
$$ \begin{gathered} \frac{1}{2}\{ \sum\limits_{a}^{1\backslash 2} {\sum\limits_{b}^{1\backslash 2} {\underbrace {{\left\langle {\psi_{a} \alpha { }\psi_{b} \alpha \left| {\psi_{a} \alpha { }\psi_{b} \alpha } \right.} \right\rangle }}_{1} - \underbrace {{\left\langle {\psi_{a} \alpha { }\psi_{b} \alpha \left| {\psi_{b} \alpha { }\psi_{a} \alpha } \right.} \right\rangle }}_{2}} } \hfill \\ + \sum\limits_{a}^{1\backslash 2} {\sum\limits_{b}^{1\backslash 2} {\underbrace {{\left\langle {\psi_{a} \beta { }\psi_{b} \alpha \left| {\psi_{a} \beta { }\psi_{b} \alpha } \right.} \right\rangle }}_{1} - \underbrace {{\left\langle {\psi_{a} \beta { }\psi_{b} \alpha \left| {\psi_{b} \beta { }\psi_{a} \beta } \right.} \right\rangle }}_{3}} } \hfill \\ + \sum\limits_{a}^{1\backslash 2} {\sum\limits_{b}^{1\backslash 2} {\underbrace {{\left\langle {\psi_{a} \beta { }\psi_{b} \alpha \left| {\psi_{a} \beta { }\psi_{b} \alpha } \right.} \right\rangle }}_{1} - \underbrace {{\left\langle {\psi_{a} \beta { }\psi_{b} \alpha \left| {\psi_{b} \beta { }\psi_{a} \beta } \right.} \right\rangle }}_{3}} } \hfill \\ + \sum\limits_{a}^{1\backslash 2} {\sum\limits_{b}^{1\backslash 2} {\underbrace {{\left\langle {\psi_{a} \beta { }\psi_{b} \beta \left| {\psi_{a} \beta { }\psi_{b} \beta } \right.} \right\rangle }}_{1} - \underbrace {{\left\langle {\psi_{a} \beta { }\psi_{b} \beta \left| {\psi_{b} \beta { }\psi_{a} \beta } \right.} \right\rangle }}_{2}} } \} \hfill \\ \end{gathered} $$
(E.4)

Here, the orthonormalization condition of the spin function causes the terms labeled 1 in Eq. (E.4) to be \(\left\langle {\psi_{a} \psi_{b} \left| {\psi_{a} \psi_{b} } \right.} \right\rangle\), the terms labeled 2 to be \(\left\langle {\psi_{a} \psi_{b} \left| {\psi_{b} \psi_{a} } \right.} \right\rangle\), and the terms labeled 3 to be zero. Thus, the 2e operator in Eq. (E.1) can be expressed as

$$\frac{1}{2}\sum_{a}^{N}\sum_{b}^{N}\langle {X}_{a}{X}_{b}|{X}_{a}{X}_{b}\rangle -\langle {X}_{a}{X}_{b}|{X}_{b}{X}_{a}\rangle =\frac{1}{2}\left\{\sum_{a}^{1/2}\sum_{b}^{1/2}4\langle {\psi }_{a}{\psi }_{b}|{\psi }_{a}{\psi }_{b}\rangle -2\langle {\psi }_{a}{\psi }_{b}|{\psi }_{b}{\psi }_{a}\rangle \right\}=\sum_{ab}^{N/2}2\langle {\psi }_{a}{\psi }_{b}|{\psi }_{a}{\psi }_{b}\rangle -\langle {\psi }_{a}{\psi }_{b}|{\psi }_{b}{\psi }_{a}\rangle $$
(E.5)

Thus, Eelec, the total energy of electrons, based on the space-orbitals in a closed-shell system, is finally expressed using Eqs. (E.3) and (E.5) as

$${E}_{elec}=\sum_{a}^{N/2}2\langle {\psi }_{a}|h|{\psi }_{a}\rangle +\sum_{ab}^{N/2}2\langle {\psi }_{a}{\psi }_{b}|{\psi }_{a}{\psi }_{b}\rangle -\langle {\psi }_{a}{\psi }_{b}|{\psi }_{b}{\psi }_{a}\rangle $$
(E.6)

Appendix F. derivation Eq. (3.5b)

$${E}_{elec}=\sum_{a}^{N/2}2\langle {\psi }_{a}|h|{\psi }_{a}\rangle +\sum_{ab}^{N/2}2\langle {\psi }_{a}{\psi }_{b}|{\psi }_{a}{\psi }_{b}\rangle -\langle {\psi }_{a}{\psi }_{b}|{\psi }_{b}{\psi }_{a}\rangle =\sum_{a}^{N/2}\left(2\langle {\psi }_{a}|h|{\psi }_{a}\rangle +\sum_{b}^{N/2}2{J}_{ab}-{K}_{ab}\right)$$
(F.1)

Here, by substituting Eq. (3.2a) into the spatial-orbit function and expanding it, the following equation that allows for matrix operations can be obtained.

$${E}_{elec}=\sum_{a}^{N/2}\left(2\sum_{\mu \nu }^{K}{C}_{\mu a}^{*}{C}_{\nu a}\int {dr}_{1}{\phi }_{\mu }^{*}\left({r}_{1}\right)h{\phi }_{\nu }({r}_{1})+\sum_{b}^{N/2}\left(2\sum_{\mu \nu }^{K}{C}_{\mu a}^{*}{C}_{\nu a}\int {dr}_{1}{dr}_{2}{\phi }_{\mu }^{*}\left({r}_{1}\right){\psi }_{b}^{*}\left({r}_{2}\right)\frac{1}{{r}_{12}}{\phi }_{\nu }\left({r}_{1}\right){\psi }_{b}\left({r}_{2}\right)-\sum_{\mu \nu }^{K}{C}_{\mu a}^{*}{C}_{\nu a}\int {dr}_{1}{dr}_{2}{\phi }_{\mu }^{*}\left({r}_{1}\right){\psi }_{b}^{*}\left({r}_{2}\right)\frac{1}{{r}_{12}}{\psi }_{b}\left({r}_{1}\right){\phi }_{\nu }\left({r}_{2}\right)\right)\right)$$
$$=\sum_{a}^{N/2}\sum_{\mu \nu }^{K}{C}_{\mu a}^{*}{C}_{\nu a}\left(2\int {dr}_{1}{\phi }_{\mu }^{*}\left({r}_{1}\right)h{\phi }_{\nu }({r}_{1})+\sum_{b}^{N/2}\left(2\int {dr}_{1}{dr}_{2}{\phi }_{\mu }^{*}\left({r}_{1}\right){\psi }_{b}^{*}\left({r}_{2}\right)\frac{1}{{r}_{12}}{\phi }_{\nu }\left({r}_{1}\right){\psi }_{b}\left({r}_{2}\right)-\int {dr}_{1}{dr}_{2}{\phi }_{\mu }^{*}\left({r}_{1}\right){\psi }_{b}^{*}\left({r}_{2}\right)\frac{1}{{r}_{12}}{\psi }_{b}\left({r}_{1}\right){\phi }_{\nu }\left({r}_{2}\right)\right)\right)$$
(F.2)

Here, the first term can be expressed as \({H}_{\mu \nu }^{core}\) and the second term can be expressed as \({G}_{\mu \nu }\) by Eq. (3.4a). When we apply this and combine the common \({C}_{\mu a}^{*}{C}_{\nu a}\), Eq. (F.2) can be written as

$${E}_{elec}=\sum_{a}^{N/2}\sum_{\mu \nu }^{K}{C}_{\mu a}^{*}{C}_{\nu a}\left(2{H}_{\mu \nu }^{core}+{G}_{\mu \nu }\right)$$
(F.3)

Here, if we consider that \({F}_{\mu \nu }=\) \({H}_{\mu \nu }^{core}\) +\({G}_{\mu \nu }\) (see Sect. 3.4) can be established, and apply the electron density matrix of Eq. (3.4d), Eelec calculated from the Fock operator can be finally expressed as

$${E}_{elec}=\frac{1}{2}\sum_{\mu \nu }^{K}{P}_{\mu \nu }\left[{H}_{\mu \nu }^{core}+{F}_{\mu \nu }\right] $$
(F.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Jung, JH., Jung, KW. et al. Ab initio potential energy surfaces calculation via restricted Hartree–Fock for molecular dynamics simulation: a comprehensive review. J. Korean Phys. Soc. 84, 550–565 (2024). https://doi.org/10.1007/s40042-024-01012-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-024-01012-y

Keywords

Navigation