Skip to main content
Log in

Electron angular distributions and attachment rates in o-Benzyne and Phenyl aromatic molecules: the effect of the permanent dipoles

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Free, gas-phase polycyclic aromatic hydrocarbons (PAHs) and related species are currently considered to play an important role in the interstellar/circumstellar medium as they are thought to significantly contribute to both Diffuse and Unidentified infrared interstellar bands. They are also considered fundamental blocks of the interstellar dust and several formation mechanisms were proposed with regard to their interstellar/circumstellar synthesis. In this paper we therefore present and discuss the results obtained from ab initio quantum scattering calculations of the response from neutral polar aromatic single-ring species to low-energies electron collisions. Our main purpose is here to provide new values for the rate constants for electron attachment to orthobenzyne and to phenyl molecules by discussing in detail the effects of the long-range dipole interaction in the framework of the Born perturbative approximation at the first order. We shall further discuss the specific behavior of the electrons’ diffusion by such molecules, especially in the low-energy range of the scattered particles’ energies as guided by their permanent dipole moments. We shall also provide accurate numerical fittings for both rates and give explicitly the fitting parameters for their possible use in evolutionary models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G.G.M. Tielens, The Physics and Chemistry of the Interstellar Medium (Cambridge University Press, 2005)

  2. A.G.G.M. Tielens, EAS Pub. Ser. 46, 3 (2011)

    Article  Google Scholar 

  3. F. Salama et al., ApJ 728, 154 (2011)

    Article  ADS  Google Scholar 

  4. C.W. Bauschlicher et al., ApJS 189, 341 (2010)

    Article  ADS  Google Scholar 

  5. T.P. Snow, V.M. Bierbaum, Annu. Rev. Anal. Chem. 1, 229 (2008)

    Article  Google Scholar 

  6. J.P. Maier et al., ApJ 726, 41 (2011)

    Article  ADS  Google Scholar 

  7. T. Oka, B.J. McCall, Science 331, 293 (2011)

    Article  ADS  Google Scholar 

  8. J. Cernicharo et al., ApJ 546, L123 (2001)

    Article  ADS  Google Scholar 

  9. P. Ehrenfreund, A.M. Sephton, Faraday Discuss. 133, 277 (2006)

    Article  ADS  Google Scholar 

  10. A.G.G.M. Tielens, in Proc. of the IAU Symposium, edited by J. Cernicharo, R. Bachiller (Cambridge University Press, 2011), Vol. 280

  11. S. Kwok, The origin and evolution of planetary nebulae, in Cambridge Astrophysics Series (Cambridge University Press, 2000)

  12. S. Kwok, ApJ 198, 583 (1975)

    Article  ADS  Google Scholar 

  13. K. Volk, G.Z. Xiong, S. Kwok, ApJ 530, 408 (2000)

    Article  ADS  Google Scholar 

  14. L. Ziurys, Proc. Natl. Acad. Sci. 106, 12274 (2006)

    Article  ADS  Google Scholar 

  15. E. Josselin, R. Bachiller, A&A 397, 659 (2003)

    Article  ADS  Google Scholar 

  16. S. Kwok, Organic matter in the Universe (Wiley-VCH, 2012)

  17. J.H. Black, in Proc. of the IAU Symposium, edited by J. Cernicharo, R. Bachiller (Cambridge University Press, 2011), Vol. 280

  18. D.M. Hudgins, L.J. Allamandola, A&A 516, L41 (1999)

    ADS  Google Scholar 

  19. S. Kwok, K. Volk, P. Bernath, ApJ 554, L87 (2001)

    Article  ADS  Google Scholar 

  20. M. Frenklach, E.D. Feigelson, ApJ 341, 372 (1989)

    Article  ADS  Google Scholar 

  21. H. Wang, M. Frenklach, J. Phys. Chem. 98, 11465 (1994)

    Article  ADS  Google Scholar 

  22. I. Chechneff, J.R. Barker, A.G.G.M. Tielens, ApJ 401, 269 (1992)

    Article  ADS  Google Scholar 

  23. H. Wang, M. Frenklach, Combust. Flame 110, 173 (1997)

    Article  Google Scholar 

  24. N.W. Moriarty, M. Frenklach, Proc. Combust. Inst. 28, 2563 (2000)

    Article  Google Scholar 

  25. A. Comandini, K. Brezinsky, J. Phys. Chem. A 115, 5547 (2011)

    Article  Google Scholar 

  26. E.R. Micelotta, A.P. Jones, A.G.G.M. Tielens, A&A 510, A36 (2010)

    Article  ADS  Google Scholar 

  27. D.S.N. Parker, F. Zhang, Y.S. Kim, R.I. Kaiser, A. Landera, V.V. Kislov, A.M. Mebel, A.G.G.M. Tielens, Proc. Natl. Acad. Sci. 109, 53 (2012)

    Article  ADS  Google Scholar 

  28. E.R. Micelotta, A.P. Jones, A.G.G.M. Tielens, A&A 510, A37 (2010)

    Article  ADS  Google Scholar 

  29. E.R. Micelotta, A.P. Jones, A.G.G.M. Tielens, A&A 526, A52 (2011)

    Article  ADS  Google Scholar 

  30. I. Cherchneff, EAS Pub. Ser. 46, 177 (2011)

    Article  Google Scholar 

  31. F. Carelli, F. Sebastianelli, I. Baccarelli, F.A. Gianturco, ApJ 712, 445 (2010)

    Article  ADS  Google Scholar 

  32. F. Carelli, F. Sebastianelli, M. Satta, F.A. Gianturco, Mon. Not. Roy. Astron. Soc. 415, 425 (2011)

    Article  ADS  Google Scholar 

  33. R.F. Gunion, M.K. Gilles, M.L. Polak, W.C. Lineberger, Int. J. Mass Spectrom. Ion Proc. 117, 601 (1992)

    Article  ADS  Google Scholar 

  34. P.G. Wenthold, R.R. Squires, W.C. Lineberger, J. Am. Chem. Soc. 120, 5279 (1998)

    Article  Google Scholar 

  35. R.J. McMahon et al., ApJ 590, L61 (2003)

    Article  ADS  Google Scholar 

  36. E. Kraka, D. Cremer, Chem. Phys. Lett. 216, 333 (1993)

    Article  ADS  Google Scholar 

  37. S. Lepp, A. Dalgarno, ApJ 324, 553 (1988)

    Article  ADS  Google Scholar 

  38. V. Wakelam, E. Herbst, ApJ 680, 371 (2008)

    Article  ADS  Google Scholar 

  39. E.L.O. Bakes, A.G.G.M. Tielens, ApJ 499, 258 (1998)

    Article  ADS  Google Scholar 

  40. M. Hammond, A. Pathak, A. Candian, P.J. Sarre, EAS Pub. Ser. 46, 373 (2011)

    Article  Google Scholar 

  41. F. Carelli, M. Satta, F.A. Gianturco, Eur. Phys. J. D 67, 230 (2013)

    Article  ADS  Google Scholar 

  42. N.J. Demarais, Z. Yang, O. Martinez Jr., N. Wehres, T.P. Snow, V.M. Bierbaum, ApJ 746, 32 (2012)

    Article  ADS  Google Scholar 

  43. R.R. Lucchese, F.A. Gianturco, Int. Rev. Phys. Chem. 15, 429 (1996)

    Article  Google Scholar 

  44. F.A. Gianturco, P. Paioletti, in Novel aspect of electron-molecule collisions, edited by K.H. Becker (World Scientific, 1998)

  45. N. Sanna, F.A. Gianturco, in Photon and Electron Collisions with Atoms and Molecules, edited by P.G. Burke, C.J. Joachain (Plenum, New York, 1997)

  46. S.L. Altman, A.P. Cracknell, Rev. Mod. Phys. 37, 19 (1965)

    Article  ADS  Google Scholar 

  47. R.R. Lucchese et al., ‘ePolyScat’ program, version E2 (1993)

  48. S. Hara, J. Phys. Soc. Jpn 22, 710 (1967)

    Article  ADS  Google Scholar 

  49. N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 114, 142 (1998)

    Article  ADS  MATH  Google Scholar 

  50. S. Altshuler, Phys. Rev. 107, 114 (1957)

    Article  ADS  MATH  Google Scholar 

  51. D.W. Norcross, N.T. Padial, Phys. Rev. A 25, 226 (1982)

    Article  ADS  Google Scholar 

  52. F.A. Gianturco, A. Jain, Phys. Rep. 143, 348 (1986)

    Article  ADS  Google Scholar 

  53. M.J. Frisch et al., Gaussian 03 (Gaussian Inc., Wallingford, CT, 2004)

  54. R.N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, 1986)

  55. K. Takayanagi, J. Phys. Jpn 21, 507 (1966)

    Article  ADS  Google Scholar 

  56. Y. Okamoto, K. Onda, Y. Itikawa, J. Phys. B 26, 745 (1993)

    Article  ADS  Google Scholar 

  57. A. Faure, V. Kokoouline, C.H. Greene, J. Tennyson, J. Phys. B 39, 4261 (2006)

    Article  ADS  Google Scholar 

  58. F. Carelli, T. Grassi, F.A. Gianturco, A&A 549, A103 (2013)

    Article  ADS  Google Scholar 

  59. S. Irrera, F.A. Gianturco, New J. Phys. 7, 1 (2005)

    Article  ADS  Google Scholar 

  60. F. Carelli, T. Grassi, M. Satta, F.A. Gianturco, ApJ 774, 97 (2013)

    Article  ADS  Google Scholar 

  61. E. Herbst, Nature 289, 656 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco A. Gianturco.

Additional information

Contribution to the Topical Issue “Astrochemical Processes and Evolutionary Modelling for Stars and Planetary Systems”, edited by Serena Viti, Franco A. Gianturco and Nigel Mason.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carelli, F., Gianturco, F.A. Electron angular distributions and attachment rates in o-Benzyne and Phenyl aromatic molecules: the effect of the permanent dipoles. Eur. Phys. J. D 67, 268 (2013). https://doi.org/10.1140/epjd/e2013-40434-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40434-5

Keywords

Navigation