Skip to main content
Log in

First observation of high-K isomeric states in \(^{249}\)Md and \(^{251}\)Md

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Decay spectroscopy of the odd-proton nuclei \(^{249}\)Md and \(^{251}\)Md has been performed. High-K isomeric states were identified for the first time in these two nuclei through the measurement of their electromagnetic decay. An isomeric state with a half-life of 2.8(5) ms and an excitation energy \(\ge 910\) keV was found in \(^{249}\)Md. In \(^{251}\)Md, an isomeric state with a half-life of 1.4(3) s and an excitation energy \(\ge 844\) keV was found. Similarly to the neighbouring \(^{255}\)Lr, these two isomeric states are interpreted as 3 quasi-particle high-K states and compared to new theoretical calculations. Excited nuclear configurations were calculated within two scenarios: via blocking nuclear states located in proximity to the Fermi surface or/and using the quasiparticle Bardeen–Cooper–Schrieffer method. Relevant states were selected on the basis of the microscopic-macroscopic model with a deformed Woods–Saxon potential. The most probable candidates for the configurations of K-isomeric states in Md nuclei are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Access to the raw binary data may be provided upon request.].

References

  1. O. Hahn, Naturwissenschaften 9(5), 84 (1921). https://doi.org/10.1007/BF01491321

    Article  ADS  Google Scholar 

  2. C.F.V. Weizsäcker, Naturwissenschaften 24(51), 813 (1936). https://doi.org/10.1007/bf01497732

    Article  ADS  Google Scholar 

  3. G.D. Dracoulis, Physica Scripta 2013(T152), 014015 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014015

  4. P. Walker, Z. Podolyák, Phys. Scr. 95(4), 044004 (2020). https://doi.org/10.1088/1402-4896/ab635d

    Article  ADS  Google Scholar 

  5. A. Ghiorso, K. Eskola, P. Eskola, M. Nurmia, Phys. Rev. C 7, 2032 (1973). https://doi.org/10.1103/PhysRevC.7.2032

    Article  ADS  Google Scholar 

  6. S. Ćwiok, S. Hofmann, W. Nazarewicz, Nucl. Phys. A 573(3), 356 (1994). https://doi.org/10.1016/0375-9474(94)90349-2

    Article  ADS  Google Scholar 

  7. K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P.G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 56(1), 238 (1997). https://doi.org/10.1103/PhysRevC.56.238

    Article  ADS  Google Scholar 

  8. M. Bender, K. Rutz, P.G. Reinhard, J.A. Maruhn, W. Greiner, Phys. Rev. C 60(3), 034304 (1999). https://doi.org/10.1103/PhysRevC.60.034304

    Article  ADS  Google Scholar 

  9. D. Ackermann, C. Theisen, Phys. Scr. 92(8), 083002 (2017). https://doi.org/10.1088/1402-4896/aa7921

  10. A. Parkhomenko, A. Sobiczewski, Acta Phys. Pol. B 35(10), 2447 (2004). https://www.actaphys.uj.edu.pl/R/35/10/2447

  11. J.P. Delaroche, M. Girod, H. Goutte, J. Libert, Nucl. Phys. A 771, 103 (2006). https://doi.org/10.1016/j.nuclphysa.2006.03.004

    Article  ADS  Google Scholar 

  12. A.V. Afanasjev, O. Abdurazakov, Phys. Rev. C 88, 014320 (2013). https://doi.org/10.1103/PhysRevC.88.014320

    Article  ADS  Google Scholar 

  13. P. Jachimowicz, M. Kowal, J. Skalski, At. Data Nucl. Data Tables 138, 101393 (2021). https://doi.org/10.1016/j.adt.2020.101393

    Article  Google Scholar 

  14. F.G. Kondev, G.D. Dracoulis, T. Kibédi, At. Data Nucl. Data Tables 103–104, 50 (2015). https://doi.org/10.1016/j.adt.2015.01.001

    Article  ADS  Google Scholar 

  15. P.M. Walker, F.R. Xu, Phys. Scr. 91(1), 013010 (2016). https://doi.org/10.1088/0031-8949/91/1/013010

  16. G.D. Dracoulis, P.M. Walker, F.G. Kondev, Rep. Progr. Phys. 79(7), 076301 (2016). https://doi.org/10.1088/0034-4885/79/7/076301

  17. R.D. Herzberg, D.M. Cox, Radiochim. Acta 99(7–8), 441 (2011). https://doi.org/10.1524/ract.2011.1858

    Article  Google Scholar 

  18. A.K. Jain, B. Maheshwari, S. Garg, M. Patial, B. Singh, Nucl. Data Sheets 128, 1 (2015). https://doi.org/10.1016/j.nds.2015.08.001

    Article  ADS  Google Scholar 

  19. K. Hauschild, A. Lopez-Martens, A.V. Yeremin, O. Dorvaux, S. Antalic, A.V. Belozerov, C. Briançon, M.L. Chelnokov, V.I. Chepigin, D. Curien, et al., Phys. Rev. C 78, 021302 (2008). https://doi.org/10.1103/PhysRevC.78.021302

  20. H.B. Jeppesen, R.M. Clark, K.E. Gregorich, A.V. Afanasjev, M.N. Ali, J.M. Allmond, C.W. Beausang, M. Cromaz, M.A. Deleplanque, I. Dragojević, et al., Phys. Rev. C 80, 034324 (2009). https://doi.org/10.1103/PhysRevC.80.034324

  21. A. Chatillon, C. Theisen, E. Bouchez, P.A. Butler, E. Clément, O. Dorvaux, S. Eeckhaudt, B.J.P. Gall, A. Görgen, T. Grahn, et al., Phys. Rev. Lett. 98, 132503 (2007). https://doi.org/10.1103/PhysRevLett.98.132503

  22. R. Briselet, C. Theisen, M. Vandebrouck, A. Marchix, M. Airiau, K. Auranen, H. Badran, D. Boilley, T. Calverley, D. Cox, et al., Phys. Rev. C 99, 024614 (2019). https://doi.org/10.1103/PhysRevC.99.024614

  23. J. Pakarinen, P. Papadakis, J. Sorri, R.D. Herzberg, P.T. Greenlees, P.A. Butler, P.J. Coleman-Smith, D.M. Cox, J.R. Cresswell, P. Jones, et al., Eur. Phys. J. A 50(3), 53 (2014). https://doi.org/10.1140/epja/i2014-14053-6

  24. J. Uusitalo, P. Jones, P. Greenlees, P. Rahkila, M. Leino, A.N. Andreyev, P.A. Butler, T. Enqvist, K. Eskola, T. Grahn, et al., Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 204, 638 (2003). https://doi.org/10.1016/S0168-583X(02)02144-4

  25. J. Sarén, J. Uusitalo, M. Leino, J. Sorri, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 654(1), 508 (2011). https://doi.org/10.1016/j.nima.2011.06.068

    Article  ADS  Google Scholar 

  26. R.D. Page, A.N. Andreyev, D.E. Appelbe, P.A. Butler, S.J. Freeman, P.T. Greenlees, R.D. Herzberg, D.G. Jenkins, G.D. Jones, P. Jones, et al., Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 204, 634 (2003). https://doi.org/10.1016/S0168-583X(02)02143-2

  27. I. Lazarus, E.E. Appelbe, P.A. Butler, P.J. Coleman-Smith, J.R. Cresswell, S.J. Freeman, R.D. Herzberg, I. Hibbert, D.T. Joss, S.C. Letts, et al., IEEE Trans. Nucl. Sci. 48(3), 567 (2001). https://doi.org/10.1109/23.940120

  28. P. Rahkila, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 595(3), 637 (2008). https://doi.org/10.1016/j.nima.2008.08.039

    Article  ADS  Google Scholar 

  29. R. Brun, F. Rademakers, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 389(1), 81 (1997). https://doi.org/10.1016/S0168-9002(97)00048-X

    Article  ADS  Google Scholar 

  30. C. Theisen, A. Lopez-Martens, C. Bonnelle, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 589(2), 230 (2008). https://doi.org/10.1016/j.nima.2008.02.044

    Article  ADS  Google Scholar 

  31. G.D. Jones, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 488(1), 471 (2002). https://doi.org/10.1016/S0168-9002(02)00469-2

    Article  ADS  Google Scholar 

  32. M.E. Leino, S. Yashita, A. Ghiorso, Phys. Rev. C 24(5), 2370 (1981). https://doi.org/10.1103/PhysRevC.24.2370

    Article  ADS  Google Scholar 

  33. K.H. Schmidt, Eur. Phys. J. A 8(1), 141 (2000). https://doi.org/10.1007/s100500070129

    Article  ADS  Google Scholar 

  34. P.T. Greenlees, R.D. Herzberg, S. Ketelhut, P.A. Butler, P. Chowdhury, T. Grahn, C. Gray-Jones, G.D. Jones, P. Jones, R. Julin, et al., Phys. Rev. C 78, 021303 (2008). https://doi.org/10.1103/PhysRevC.78.021303

  35. B. Sulignano, S. Heinz, F.P. Heßberger, S. Hofmann, D. Ackermann, S. Antalic, B. Kindler, I. Kojouharov, P. Kuusiniemi, B. Lommel, R. Mann, et al., Eur. Phys. J. A 33(4), 327 (2007). https://doi.org/10.1140/epja/i2007-10469-3

  36. S.K. Tandel, T.L. Khoo, D. Seweryniak, G. Mukherjee, I. Ahmad, B. Back, R. Blinstrup, M.P. Carpenter, J. Chapman, P. Chowdhury, et al., Phys. Rev. Lett. 97, 082502 (2006). https://doi.org/10.1103/PhysRevLett.97.082502

  37. A. Chatillon, C. Theisen, P.T. Greenlees, G. Auger, J.E. Bastin, E. Bouchez, B. Bouriquet, J.M. Casandjian, R. Cee, E. Clément, et al., Eur. Phys. J. A 30(2), 397 (2006). https://doi.org/10.1140/epja/i2006-10134-5

  38. F.P. Heßberger, S. Antalic, B. Streicher, S. Hofmann, D. Ackermann, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, et al., Eur. Phys. J. A Hadrons Nuclei 26(2), 233 (2005). https://doi.org/10.1140/epja/i2005-10171-6

  39. R. Briselet, C. Theisen, B. Sulignano, M. Airiau, K. Auranen, D.M. Cox, F. Déchery, A. Drouart, Z. Favier, B. Gall, et al., Phys. Rev. C 102, 014307 (2020). https://doi.org/10.1103/PhysRevC.102.014307

  40. N.Y. Shirikova, A.V. Sushkov, R.V. Jolos, Phys. Rev. C 88, 064319 (2013). https://doi.org/10.1103/PhysRevC.88.064319

    Article  ADS  Google Scholar 

  41. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, et al., Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

  42. F.P. Heßberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, G. Münzenberg, S. Saro, A. Lavrentev, A.G. Popeko, A.V. Yeremin, C. Stodel, Eur. Phys. J. A Hadrons Nuclei 12(1), 57 (2001). https://doi.org/10.1007/s100500170039

    Article  ADS  Google Scholar 

  43. J. Kallunkathariyil, B. Sulignano, P.T. Greenlees, J. Khuyagbaatar, C. Theisen, K. Auranen, H. Badran, F. Bisso, P. Brionnet, R. Briselet, et al., Phys. Rev. C 101, 011301 (2020). https://doi.org/10.1103/PhysRevC.101.011301

  44. H.M. David, J. Chen, D. Seweryniak, F.G. Kondev, J.M. Gates, K.E. Gregorich, I. Ahmad, M. Albers, M. Alcorta, B.B. Back, et al., Phys. Rev. Lett. 115, 132502 (2015). https://doi.org/10.1103/PhysRevLett.115.132502

  45. J. Khuyagbaatar, A. Mistry, D. Ackermann, L.L. Andersson, M. Block, H. Brand, C. Düllmann, J. Even, F. Heßberger, J. Hoffmann, et al., Nucl. Phys. A 994, 121662 (2020). https://doi.org/10.1016/j.nuclphysa.2019.121662

  46. S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, Comput. Phys. Commun. 46(3), 379 (1987). https://doi.org/10.1016/0010-4655(87)90093-2

    Article  ADS  Google Scholar 

  47. H.J. Krappe, J.R. Nix, A.J. Sierk, Phys. Rev. C 20, 992 (1979). https://doi.org/10.1103/PhysRevC.20.992

    Article  ADS  Google Scholar 

  48. I. Muntian, Z. Patyk, A. Sobiczewski, Acta Phys. Pol. B 32, 691 (2001). https://www.actaphys.uj.edu.pl/R/32/3/691

  49. M. Kowal, P. Jachimowicz, A. Sobiczewski, Phys. Rev. C 82, 014303 (2010). https://doi.org/10.1103/PhysRevC.82.014303

    Article  ADS  Google Scholar 

  50. P. Jachimowicz, M. Kowal, J. Skalski, Phys. Rev. C 89, 024304 (2014). https://doi.org/10.1103/PhysRevC.89.024304

    Article  ADS  Google Scholar 

  51. P. Jachimowicz, M. Kowal, J. Skalski, Phys. Rev. C 92, 044306 (2015). https://doi.org/10.1103/PhysRevC.92.044306

    Article  ADS  Google Scholar 

  52. P. Jachimowicz, M. Kowal, J. Skalski, Phys. Rev. C 95, 014303 (2017). https://doi.org/10.1103/PhysRevC.95.014303

    Article  ADS  Google Scholar 

  53. P. Jachimowicz, M. Kowal, J. Skalski, Phys. Rev. C 98, 014320 (2018). https://doi.org/10.1103/PhysRevC.98.014320

    Article  ADS  Google Scholar 

  54. P. Jachimowicz, M. Kowal, J. Skalski, Phys. Rev. C 101, 014311 (2020). https://doi.org/10.1103/PhysRevC.101.014311

    Article  ADS  Google Scholar 

  55. M. Asai, F.P. Heßberger, A. Lopez-Martens, Nucl. Phys. A 944, 308 (2015). https://doi.org/10.1016/j.nuclphysa.2015.06.011

    Article  ADS  Google Scholar 

  56. A. Parkhomenko, A. Sobiczewski, Acta Phys. Pol. B 36(10), 3115 (2005). https://www.actaphys.uj.edu.pl/R/36/10/3115

  57. S. Ketelhut, P.T. Greenlees, D. Ackermann, S. Antalic, E. Clément, I.G. Darby, O. Dorvaux, A. Drouart, S. Eeckhaudt, B.J.P. Gall, et al., Phys. Rev. Lett. 102, 212501 (2009). https://doi.org/10.1103/PhysRevLett.102.212501

Download references

Acknowledgements

We acknowledge the accelerator staff at the University of Jyväskylä for delivering a high-quality beam during the experiments. Support has been provided by the EU 7th Framework Programme “Integrating Activities - Transnational Access” Project no. 262010 (ENSAR), by the Academy of Finland under the Finnish Centre of Excellence Programme (Nuclear and Accelerator Based Physics Programme at JYFL; contract 213503), and by the UK STFC. A. H. would like to thank the Slovak Research and Development Agency under contract no. APVV-15-0225, and Slovak grant agency VEGA (contract no. 2/0067/21). This work was also supported by the Research and Development Operational Programme funded by the European Regional Development Fund, project no. ITMS code 26210120023, We thank the European Gamma-Ray Spectroscopy pool (Gammapool) for the loan of the germanium detectors used in the SAGE array. M. K. was co-financed by the National Science Centre under Contract no. UMO-2013/08/M/ST2/00257 (LEA COPIGAL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Theisen.

Additional information

Communicated by Navin Alahari.

J. Rubert: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goigoux, T., Theisen, C., Sulignano, B. et al. First observation of high-K isomeric states in \(^{249}\)Md and \(^{251}\)Md. Eur. Phys. J. A 57, 321 (2021). https://doi.org/10.1140/epja/s10050-021-00631-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00631-4

Navigation